Patents Assigned to Ayar Labs, Inc.
  • Patent number: 10845555
    Abstract: An optical module includes a laser light supply system and a chip disposed within a housing. The chip includes a laser input optical port and a transmit data optical port and a receive data optical port. The optical module includes a link-fiber interface exposed at an exterior surface of the housing. The link-fiber interface includes a transmit data connector and a receive data connector. The optical module includes a polarization-maintaining optical fiber connected between a laser output optical port of the laser light supply system and the laser input optical port of the chip. The optical module includes a first non-polarization-maintaining optical fiber connected between the transmit data optical port of the chip and the transmit data connector of the link-fiber interface. The optical module includes a second non-polarization-maintaining optical fiber connected between the receive data optical port of the chip and the receive data connector of the link-fiber interface.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: November 24, 2020
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Roy Edward Meade, Mark Wade, Chen Sun, Vladimir Stojanovic, Alexandra Wright
  • Patent number: 10775576
    Abstract: A plurality of lid structures include at least one lid structure configured to overlie one or more heat sources within a multi-chip-module and at least one lid structure configured to overlie one or more temperature sensitive components within the multi-chip-module. The plurality of lid structures are configured and positioned such that each lid structure is separated from each adjacent lid structure by a corresponding thermal break. A heat spreader assembly is positioned in thermally conductive interface with the plurality of lid structures. The heat spreader assembly is configured to cover an aggregation of the plurality of lid structures. The heat spreader assembly includes a plurality of separately defined heat transfer members respectively configured and positioned to overlie the plurality of lid structures. The heat spreader assembly is configured to limit heat transfer between different heat transfer members within the heat spreader assembly.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: September 15, 2020
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Vladimir Stojanovic
  • Patent number: 10771160
    Abstract: A laser module includes a laser source and an optical marshalling module. The laser source is configured to generate and output a plurality of laser beams. The plurality of laser beams have different wavelengths relative to each other. The different wavelengths are distinguishable to an optical data communication system. The optical marshalling module is configured to receive the plurality of laser beams from the laser source and distribute a portion of each of the plurality of laser beams to each of a plurality of optical output ports of the optical marshalling module, such that all of the different wavelengths of the plurality of laser beams are provided to each of the plurality of optical output ports of the optical marshalling module. An optical amplifying module can be included to amplify laser light output from the optical marshalling module and provide the amplified laser light as output from the laser module.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: September 8, 2020
    Assignee: Ayar Labs, Inc.
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden
  • Patent number: 10749603
    Abstract: An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: August 18, 2020
    Assignee: Ayar Labs, Inc.
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden, Michael Davenport
  • Patent number: 10670807
    Abstract: A lens assembly for an optical fiber includes an optical gap structure and a multi-mode optical fiber. The optical gap structure has first and second ends and a length measured therebetween. The first end of the optical gap structure is configured to attach to an end of a single-mode optical fiber. The multi-mode optical fiber has first and second ends and a length measured therebetween. The first end of the multi-mode optical fiber is attached to the second end of the optical gap structure. The length of the optical gap structure and the length of the multi-mode optical fiber are set to provide a prescribed working distance and a prescribed light beam waist diameter. The prescribed working distance is a distance measured from the second end of the multi-mode optical fiber to a location of the prescribed light beam waist diameter.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: June 2, 2020
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, John Fini, Mark Wade
  • Patent number: 10641939
    Abstract: A first reflecting region is positioned at an end of an optical fiber and includes a polarization-sensitive reflector configured to selectively reflect a first polarization of light emanating from the optical fiber into a first reflected beam and transmit light that is not of the first polarization. The first reflected beam is directed toward a first optical grating coupler on a chip. A spacer layer is disposed on the first reflecting region such that light transmitted from the first reflecting region enters and passes through the spacer layer. A second reflecting region is disposed on the spacer layer and is configured to reflect light that is incident upon the second reflecting region into a second reflected beam directed toward a second optical grating coupler on the chip. A thickness of the spacer layer is set to control a separation distance between the first reflected beam and the second reflected beam.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: May 5, 2020
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Roy Edward Meade, Derek Van Orden, Mark Wade
  • Patent number: 10641976
    Abstract: A photonic chip includes a substrate, an electrical isolation region formed over the substrate, and a front end of line (FEOL) region formed over the electrical isolation region. The photonic chip also includes an optical coupling region. The electrical isolation region and the FEOL region and a portion of the substrate are removed within the optical coupling region. A top surface of a the substrate within the optical coupling region includes a plurality of grooves configured to receive and align a plurality of optical fibers. The grooves are formed at a vertical depth within the substrate to provide for alignment of optical cores of the plurality of optical fibers with the FEOL region when the plurality of optical fibers are positioned within the plurality of grooves within the optical coupling region.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: May 5, 2020
    Assignee: Ayar Labs, Inc.
    Inventors: Mark Wade, Chen Sun, John Fini, Roy Edward Meade, Vladimir Stojanovic, Alexandra Wright
  • Patent number: 10630393
    Abstract: An optical cavity is formed to have a circuitous configuration. The optical cavity is configured to receive light coupled from a waveguide. At least two photodetector sections are formed over respective portions of the optical cavity. Each of the at least two photodetector sections is configured to detect light present within the optical cavity. Each of the at least two photodetector sections is configured for separate and independent control.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: April 21, 2020
    Assignee: Ayar Labs, Inc.
    Inventors: Mark Wade, Chen Sun, Nandish Mehta
  • Patent number: 10581215
    Abstract: A laser light generator is configured to generate one or more wavelengths of continuous wave laser light. The laser light generator is configured to collectively and simultaneously transmit each of the wavelengths of continuous wave laser light through an optical output of the laser light generator as a laser light supply. An optical fiber is connected to receive the laser light supply from the optical output of the laser light generator. An optical distribution network has an optical input connected to receive the laser light supply from the optical fiber. The optical distribution network is configured to transmit the laser light supply to each of one or more optical transceivers and/or optical sensors. The laser light generator is physically separate from each of the one or more optical transceivers and/or optical sensors.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: March 3, 2020
    Assignee: Ayar Labs, Inc.
    Inventors: Milos Popovic, Rajeev Ram, Vladimir Stojanovic, Chen Sun, Mark Taylor Wade, Alexandra Carroll Wright
  • Patent number: 10330875
    Abstract: An optical module includes a laser light supply system and a chip disposed within a housing. The chip includes a laser input optical port and a transmit data optical port and a receive data optical port. The optical module includes a link-fiber interface exposed at an exterior surface of the housing. The link-fiber interface includes a transmit data connector and a receive data connector. The optical module includes a polarization-maintaining optical fiber connected between a laser output optical port of the laser light supply system and the laser input optical port of the chip. The optical module includes a first non-polarization-maintaining optical fiber connected between the transmit data optical port of the chip and the transmit data connector of the link-fiber interface. The optical module includes a second non-polarization-maintaining optical fiber connected between the receive data optical port of the chip and the receive data connector of the link-fiber interface.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: June 25, 2019
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Roy Edward Meade, Mark Wade, Chen Sun, Vladimir Stojanovic, Alexandra Wright
  • Patent number: 10135218
    Abstract: A laser light generator is configured to generate one or more wavelengths of continuous wave laser light. The laser light generator is configured to collectively and simultaneously transmit each of the wavelengths of continuous wave laser light through an optical output of the laser light generator as a laser light supply. An optical fiber is connected to receive the laser light supply from the optical output of the laser light generator. An optical distribution network has an optical input connected to receive the laser light supply from the optical fiber. The optical distribution network is configured to transmit the laser light supply to each of one or more optical transceivers and/or optical sensors. The laser light generator is physically separate from each of the one or more optical transceivers and/or optical sensors.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: November 20, 2018
    Assignee: Ayar Labs, Inc.
    Inventors: Milos Popovic, Rajeev Ram, Vladimir Stojanovic, Chen Sun, Mark Taylor Wade, Alexandra Carroll Wright