Patents Assigned to BASF Corporation
  • Patent number: 11110446
    Abstract: Catalytic articles comprising a substrate having a catalytic coating thereon, the catalytic coating comprising a catalytic layer having a thickness and an inner surface proximate to the substrate and an outer surface distal to the substrate; where the catalytic layer comprises a noble metal component on support particles and where the concentration of the noble metal component towards the outer surface is greater than the concentration towards the inner surface are highly effective towards treating exhaust gas streams of internal combustion engines. The articles are prepared via a method comprising providing a first mixture comprising micron-scaled support particles and applying the first mixture to a substrate to form a micro-particle layer; providing a second mixture comprising nano-scaled support particles and a noble metal component having an initial pH and applying the second mixture to the micro-particle layer and calcining the substrate.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: September 7, 2021
    Assignee: BASF Corporation
    Inventors: Xinzhu Liu, Michael Galligan, Ye Liu, Young Gin Kim, Milena Kudziela, Xinsheng Liu, Pascaline Tran
  • Publication number: 20210267186
    Abstract: A pest control and/or detection system generally includes an electrically conductive bait matrix including at least one carrier material that is at least one of palatable, a phagostimulant and/or consumable and/or displaceable by pests, and a plurality of electrically conductive particles. The electrically conductive particles are substantially randomly interspersed throughout the at least one carrier material. The at least one carrier material includes a thermoplastic material and/or a resin.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Applicant: BASF Corporation
    Inventors: James W. Austin, Cheryl Ann Leichter, Kenneth S. Brown
  • Patent number: 11097264
    Abstract: The present invention provides methods for low temperature desulfating sulfur-poisoned SCR catalysts, and emission control systems adapted to apply such desulfating methods, in order to regenerate catalytic NOx conversion activity. The methods are adapted for treating an SCR catalyst to desorb sulfur from the surface of the SCR catalyst and increase NOx conversion activity of the SCR catalyst, the treating step including treating the SCR catalyst with a gaseous stream comprising a reductant for a first treatment time period and at a first treatment temperature, wherein the first treatment temperature is about 350° C. or less, followed by a second treatment time period and a second treatment temperature higher than the first treatment temperature, wherein the molar ratio of reductant to NOx during the treating step is about 1.05:1 or higher.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: August 24, 2021
    Assignee: BASF Corporation
    Inventors: Xiaofan Yang, Weiyong Tang, Ze Zhang
  • Publication number: 20210253955
    Abstract: A bottoms cracking catalyst composition, comprising: about 30 to about 60 wt % alumina; greater than 0 to about 10 wt % of a dopant, measured as the oxide; about 2 to about 20 wt % reactive silica; about 3 to about 20 wt % of a component comprising peptizable boehmite, colloidal silica, aluminum chlorohydrol, or a combination of any two or more thereof; and about 10 to about 50 wt % of kaolin.
    Type: Application
    Filed: December 10, 2018
    Publication date: August 19, 2021
    Applicant: BASF Corporation
    Inventors: David M. STOCKWELL, Junmei WEI, Xingtao GAO, David H. HARRIS
  • Publication number: 20210252491
    Abstract: The present disclosure relates to a process for preparing a zeolitic material having framework type AEI and having a framework structure which comprises a tetravalent element Y, a trivalent element X, and O. Further, the present invention disclosure relates to a zeolitic material having framework type AEI and having a framework structure which comprises a tetravalent element Y, a trivalent element X, and O, preferably obtained by the process, and further relates to the use of the zeolitic material as a catalytically active material, as a catalyst, or as a catalyst component.
    Type: Application
    Filed: September 10, 2019
    Publication date: August 19, 2021
    Applicants: BASF Corporation, BASF SE
    Inventors: Robert MCGUIRE, Faruk OEZKIRIM, Ulrich MUELLER
  • Patent number: 11077432
    Abstract: The present disclosure generally provides catalysts, catalyst articles and catalyst systems including such catalyst articles. In particular, the catalyst composition includes a metal ion-exchanged molecular sieve ion-exchanged with at least one additional metal, which reduces the number of metal centers often present in metal promoted zeolite catalysts. Methods of making and using the catalyst composition are also provided, as well as emission treatment systems including a catalyst article coated with the catalyst composition. The catalyst article present in such emission treatment systems is useful to catalyze the reduction of nitrogen oxides in gas exhaust in the presence of a reductant while minimizing the amount of dinitrogen oxide emission.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: August 3, 2021
    Assignee: BASF Corporation
    Inventors: Wenyong Lin, Jaya Lakshmi, Xinsheng Liu, John Hochmuth
  • Patent number: 11077428
    Abstract: A catalyst includes a mixed metal oxide; an alumina; silica, and calcium, where the mixed metal oxide includes Cu and at least one of Mn, Zn, Ni, or Co. Such catalysts exhibit enhanced tolerance sulfur-containing compounds and free fatty acids.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: August 3, 2021
    Assignee: BASF Corporation
    Inventors: Deepak S. Thakur, William O. Tuttle, Arunabha Kundu, Keenan Lee Deutsch, Jeffrey Baciak
  • Publication number: 20210229079
    Abstract: The present disclosure relates to copper-containing molecular sieve catalysts that are highly suitable for the treatment of exhaust containing NOx pollutants. The copper-containing molecular sieve catalysts contain ion-exchanged copper as Cu+2 and Cu(OH)+1, and DRIFT spectroscopy of the catalyst exhibits perturbed T-O-T vibrational peaks corresponding to the Cu+2 and Cu(OH)+1. In spectra taken of the catalytic materials, a ratio of the Cu+2 to the Cu(OH)+1 peak integration areas preferably can be ?1. The copper-containing molecular sieve catalysts are aging stable such that the peak integration area percentage of the Cu+2 peak (area Cu+2/(area Cu+2+area Cu(OH)+1)) increases by ?20% upon aging at 800° C. for 16 hours in the presence of 10% H2O/air, compared to the fresh state.
    Type: Application
    Filed: March 19, 2021
    Publication date: July 29, 2021
    Applicant: BASF Corporation
    Inventors: Wen-Mei XUE, Xiaofan YANG, Haiyang ZHU, Stanley ROTH, Jeff YANG, Subramanian PRASAD, Ahmad MOINI
  • Patent number: 11065688
    Abstract: The invention relates to nano-particles comprising metallic ferromagnetic nanocrystals combined with either amorphous or graphitic carbon in which or on which chemical groups are present that can dissociate in aqueous solutions. According to the invention there is provided nano-particles comprising metal particles of at least one ferromagnetic metal, which metal particles are at least in part encapsulated by graphitic carbon. The nano-particles of the invention are prepared by impregnating carbon containing bodies with an aqueous solution of at least one ferromagnetic metal precursor, drying the impregnated bodies, followed by heating the impregnated bodies in an inert and substantially oxygen-free atmosphere, thereby reducing the metal compounds to the corresponding metal or metal alloy.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: July 20, 2021
    Assignee: BASF CORPORATION
    Inventors: Leonardus Wijnand Jenneskens, John Wilhelm Geus, Bernard Hendrik Reesink, Pieter Hildegardus Berben, Jacobus Hoekstra
  • Publication number: 20210213434
    Abstract: The present disclosure is directed to a Low Temperature NOx-Absorber (LT-NA) catalyst composition which exhibits NOx adsorption in a broad temperature and space velocity range, and shifts NOx desorption to a desired temperature range. In particular, the LT-NA composition includes a large pore zeolite containing a palladium component and a small or medium pore zeolite containing a palladium component. Further provided is a catalyst article including the LT-NA catalyst composition, an emission treatment system for treating an exhaust gas including the catalyst article, and methods for reducing a NOx level in an exhaust gas stream using the catalyst article.
    Type: Application
    Filed: May 29, 2019
    Publication date: July 15, 2021
    Applicant: BASF Corporation
    Inventors: Jia Cheng LIU, Evan Vincent MIU, Xiaoming XU, Xinyi WEI, Stefan MAURER
  • Patent number: 11051504
    Abstract: A pest control and/or detection system generally includes an electrically conductive bait matrix including at least one carrier material that is at least one of palatable, a phagostimulant and/or consumable and/or displaceable by pests, and a plurality of electrically conductive particles. The electrically conductive particles are substantially randomly interspersed throughout the at least one carrier material. The at least one carrier material includes a thermoplastic material and/or a resin.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: July 6, 2021
    Assignee: BASF Corporation
    Inventors: James W Austin, Cheryl A Leichter, Kenneth S Brown
  • Publication number: 20210180500
    Abstract: An SCR catalyst for treating diesel exhaust gas has: a flow-through substrate with an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the flow through substrate extending therethrough; a first coating disposed on the internal wall surface of the substrate, the surface defining the interface between the internal walls and passages, the first coating extending over 40 to 100% of the substrate axial length, the first coating having an 8-membered ring pore zeolitic material with copper and/or iron; a second coating extending over 20 to 100% of the substrate axial length, the second coating having a first oxidic material with titania, wherein at least 75 wt. % of the second coating is titania, calculated as TiO2, and 0 to 0.01 wt. % of the second coating is vanadium oxides, calculated as V2O5.
    Type: Application
    Filed: July 24, 2019
    Publication date: June 17, 2021
    Applicant: BASF Corporation
    Inventors: Edgar Viktor HUENNEKES, Kevin David BEARD, Petra CORDES, Ruediger WOLFF, Jan Martin BECKER
  • Publication number: 20210178380
    Abstract: A selective catalytic reduction (SCR) catalyst composition effective in the abatement of nitrogen oxides (NOx) is provided. The SCR catalyst composition significantly increases the conversion of NOx relative to a Cu-chabazite reference catalyst composition at any temperature, and especially at low temperatures. A catalyst article, an exhaust gas treatment system, and a method of treating an exhaust gas stream, each including the SCR catalyst composition of the invention, are also provided. The SCR catalyst composition is particularly useful for treatment of exhaust from a lean-burn engine.
    Type: Application
    Filed: July 30, 2019
    Publication date: June 17, 2021
    Applicant: BASF CORPORATION
    Inventor: Yuejin Li
  • Patent number: 11034841
    Abstract: The present application is directed to combination effect pigments comprising an effect pigment and carbon black, wherein the carbon black is adherently deposited on the effect pigment interposed within the substrate and at least one subsequent layer of the effect pigment. This structure of the combination effect pigment results in advantageous non-staining properties of the pigment and maximizes color effects of the carbon black.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: June 15, 2021
    Assignee: BASF Corporation
    Inventors: Lizzabeth Ponce, Geoffrey Johnson, Louis R. Cerce, Steven Jones, Curtis Zimmermann
  • Publication number: 20210172361
    Abstract: The present invention relates to a selective catalytic reduction catalyst for the treatment of an exhaust gas of a diesel engine comprising: a flow-through substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the flow through substrate extending therethrough; a coating disposed on the surface of the internal walls of the substrate, wherein the coating comprises a non-zeolitic oxidic material comprising manganese and one or more of the metals of the groups 4 to 11 and 13 of the periodic table, and further comprises one or more of a vanadium oxide and a zeolitic material comprising one or more of copper and iron.
    Type: Application
    Filed: April 23, 2019
    Publication date: June 10, 2021
    Applicant: BASF Corporation
    Inventors: Marcus HILGENDORFF, Karifala DUMBUYA, Matthias PETER, Andreas SUNDERMANN
  • Patent number: 11027264
    Abstract: A microspherical fluid catalytic cracking catalyst includes zeolite, and alkali metal ion or alkaline earth metal ion.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: June 8, 2021
    Assignee: BASF Corporation
    Inventor: Karl C. Kharas
  • Patent number: 11028749
    Abstract: Systems for abatement of pollutants in an exhaust gas stream of an internal combustion engine including a hydrogen injection article configured to introduce hydrogen upstream of a catalytic article are effective for the abatement of carbon monoxide and/or hydrocarbons and/or nitrogen oxides. The introduction of hydrogen may be intermittent and/or during a cold-start period.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: June 8, 2021
    Assignee: BASF CORPORATION
    Inventors: Shiang Sung, Saeed Alerasool
  • Patent number: 11021372
    Abstract: Disclosed herein are compositions including aluminosilicate zeolite crystals with an 8 ring pore size having a depth dependent silica to alumina molar ratio and processes of making aluminosilicate zeolite crystals with an 8 ring pore size having a depth dependent silica to alumina molar ratio.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: June 1, 2021
    Assignee: BASF Corporation
    Inventors: Eduard L Kunkes, Ahmad Moini, Martitza I. Ortega
  • Patent number: 11021629
    Abstract: Two-part aqueous coating compositions as well as methods of using thereof are described. The first coating component can comprise one or more polymers and the second coating component can comprise a flocculant. The first coating component and the second coating component can be provided as separate aqueous compositions. The first coating component and a second coating component that can be co-applied (e.g., simultaneously or sequentially) to a surface form a rapid set coating.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: June 1, 2021
    Assignee: BASF Corporation
    Inventors: Sridhar G. Iyer, Randall Petrie, Michael A. Guibault
  • Publication number: 20210155575
    Abstract: A process for the preparation of amino alcohols includes condensing a compound of Formula (II), a stereoisomer, a tautomer, or a salt thereof with a compound of Formula (IIIa) or Formula (IIIb), a stereoisomer, a tautomer, or a salt thereof to form a condensation product; hydroxylating or acyloxylating the condensation product in the presence of an oxidant to obtain a hydroxylation or acyloxylation product; and subjecting the hydroxylation or acyloxylation product to one or more subsequent reactions comprising a hydrolysis reaction, alcohol deprotection, an amino lysis reaction, or a combination of two or more thereof to obtain an amino alcohol of Formula (I).
    Type: Application
    Filed: July 2, 2019
    Publication date: May 27, 2021
    Applicants: BASF SE, BASF CORPORATION, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Martin ERNST, Stephan ZUEND, Bo SU, Ala BUNESCU, John F. HARTWIG