Patents Assigned to BASF SE
  • Patent number: 10336040
    Abstract: The present invention relates to a method for manufacturing a composite element comprising a single- or multi-part core and an envelope which are in a force fit combination with each other, at least comprising providing a single- or multi-part core of an evacuable organic material; at least partly enveloping the core with an envelope to obtain a composite element precursor; and treating the composite element precursor for a period leading to an at least partial softening of the evacuable organic material and of the envelope surface apposing the core. The present invention further relates to composite elements obtained or obtainable by a method of the present invention and also to the method of using a composite element of the present invention as a vacuum insulation panel or as a thermal insulation material.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: July 2, 2019
    Assignee: BASF SE
    Inventors: Werner Wiegmann, Marc Fricke, Joerg Krogmann
  • Patent number: 10336877
    Abstract: The present invention relates to a process for producing polyurethane moldings, wherein (a) organic polyisocyanates are mixed with (b) one or more compounds having at least two hydrogen atoms which are reactive toward isocyanate, comprising polyester polyol, (c) blowing agent, (d) catalyst, and (e) propylene carbonate and compounds selected from the group consisting of at least one compound of the general formula (I) and a compound of the formula (II), to give a reaction mixture, introduced into a mold and allowed to react to give a polyurethane molding. The present invention further relates to polyurethane moldings obtainable by such a process and also the use of these moldings as steering wheels, seats, armrests and in particular as shoe soles.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: July 2, 2019
    Assignee: BASF SE
    Inventors: Gnuni Karapetyan, Marco Ortalda, Marco Valieri
  • Patent number: 10336883
    Abstract: Disclosed herein are compositions comprising an ionic crosslinking agent (e.g., compositions comprising crosslinked products prepared by ionically crosslinking a polymer derived from styrene and optionally butadiene using an ionic crosslinking agent). The present disclosure also relates to methods of making the disclosed compositions. The compositions disclosed herein can be used in a variety of applications including, but not limited to, asphalt compositions, paints, coatings, carpet compositions, paper binding and coating compositions, foams, or adhesives.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: July 2, 2019
    Assignee: BASF SE
    Inventor: Kostas S. Avramidis
  • Patent number: 10336912
    Abstract: The present invention provides an aqueous polyurethane (PU)-polyacrylate hybrid dispersion obtainable by free radical polymerization of at least one acrylate polymer (A1) in the presence of at least one polyurethane (P1), a process for preparing these aqueous polyurethane-polyacrylate hybrid dispersions, wherein said process comprises a) preparing an aqueous polyurethane dispersion and b) using the polyurethane dispersion thus prepared as raw material for the further synthesis of a polyacrylate dispersion, and the use of the hybrid dispersion thus obtained as binder in filled coating materials, particularly as a binder for flexible roof coatings.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: July 2, 2019
    Assignee: BASF SE
    Inventors: Ekkehard Jahns, Timo Mangel, Christine Roesch, Paola Romanato, Yeni Burk, Joachim Pakusch
  • Publication number: 20190194392
    Abstract: The present invention relates to a polymer film (P) contacting at least one copolyamide. The copolyamide is prepared by polymerizing a first monomer mixture (M1), containing at least one C4-C12 dicarboxylic acid and at least one C4-C12 diamine, and a second monomer mixture (M2) containing at least one C32-C40 dimer acid and at least one C4-C12 diamine. The present invention further relates to a process for producing the polymer film (P) and to the use of the polymer film (P) for high-temperature applications.
    Type: Application
    Filed: September 5, 2017
    Publication date: June 27, 2019
    Applicant: BASF SE
    Inventors: Rolf MINKWITZ, Andreas Thomas HAEDLER
  • Publication number: 20190198206
    Abstract: Described are a kit comprising at least two magnetocaloric materials having identical stoichiometry but different Curie temperature, a magnetocaloric regenerator comprising at least two magnetocaloric materials having identical stoichiometry but different Curie temperature and a process for producing at least two magnetocaloric materials having identical stoichiometry but different Curie temperature.
    Type: Application
    Filed: August 31, 2017
    Publication date: June 27, 2019
    Applicant: BASF SE
    Inventors: Johan TER MAAT, Sumohan MISRA, David VAN ASTEN, Bernard REESINK, Wilfried HERMES, Michael ZEILINGER, Fabian SEELER, Kerstin SCHIERLE-ARNDT, Ekkehard BRUECK, Van Thang NGUYEN
  • Publication number: 20190194402
    Abstract: The present invention provides a liquid antioxidant composition used for raw rubbers comprising 5% to 30% by weight of at least one aromatic amine-based antioxidant agent, 20% to 70% by weight of at least one hindered phenol-based antioxidant agent, 0% to 40% by weight of at least one phosphite-based antioxidant agent; and 20% to 40% by weight of at least one solvent having boiling point higher than 185° C. and freezing point lower than ?10° C. under 101.325 KPa, the weight percentage of component a), b), c) or d) is based on the total weight of antioxidant composition, wherein the mixture of component a), b) and c) is liquid at 25° C. under 101.325 KPa. The present invention also provides a liquid antioxidant composition comprising 5% to 20% by weight of solid aromatic amine-based antioxidant agent, 20% to 50% by weight of solid hindered phenol-based antioxidant agent, 0% to 30% by weight of solid phosphite-based antioxidant agent and 30% to 40% by weight of solvent having boiling point higher than 185° C.
    Type: Application
    Filed: August 21, 2017
    Publication date: June 27, 2019
    Applicant: BASF SE
    Inventors: Yi Qiong ZHOU, Chang Liang FAN, Guo Liang YUAN, Zhong Yi ZHOU
  • Patent number: 10328150
    Abstract: Dosage forms comprising preparations of slightly water-soluble active substances in a polymer matrix of polyether copolymers, the polyether copolymers being obtained by free radical polymerization of a mixture of from 30 to 80% by weight of N-vinyllactam, from 10 to 50% by weight of vinyl acetate and from 10 to 50% by weight of a polyether, and of at least one slightly water-soluble polymer in which the slightly water-soluble active substance is present in amorphous form in the polymer matrix.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: June 25, 2019
    Assignee: BASF SE
    Inventors: Karl Kolter, Dejan Djuric, Stefan Fischer
  • Patent number: 10329398
    Abstract: A flexible polyurethane foam article exhibiting flame resistance comprises the reaction product of an isocyanate and an isocyanate-reactive component comprising a polyol reactive with the isocyanate. The isocyanate and the isocyanate-reactive component are reacted in the presence of a blowing agent and a phospholene oxide. A method of producing the flexible polyurethane foam article includes the step of reacting the isocyanate and the isocyanate-reactive component in the presence of the blowing agent and an effective amount of the phospholene oxide to form the flexible polyurethane foam article which is flame resistant.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: June 25, 2019
    Assignee: BASF SE
    Inventors: Steven E. Wujcik, Rajesh Kumar, Christopher J. Milantoni
  • Patent number: 10333072
    Abstract: A thin film semiconductor comprising a compound of formula I or II wherein: R1 and R2, at each occurrence, independently are selected from a C1-30 alkyl group, a C2-30 alkenyl group, a C2-30 alkynyl group and a C1-30 haloalkyl group, R3, R4, R5, and R6 independently are H or an electron-withdrawing group, wherein at least one of R3, R4, R5, and R6 is an electron-withdrawing group; and a non-conductive polymer.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: June 25, 2019
    Assignee: BASF SE
    Inventors: Thomas Weitz, Thomas Gessner, Junichi Takeya, Masayuki Kishi
  • Patent number: 10329378
    Abstract: Provided are graphene nanoribbons with controlled zig-zag edge and cove edge configuration and methods for preparing such graphene nanoribbons. The nanoribbons are selected from the following formulae.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: June 25, 2019
    Assignees: BASF SE, EMPA-Eidgenoessische Materialpruefungs-und Forschungsanstalt, Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Matthias Georg Schwab, Klaus Muellen, Xinliang Feng, Bo Yang, Tim Dumslaff, Roman Fasel, Pascal Ruffieux, Jia Liu, Jinming Cai, Carlos Sanchez-Sanchez, Junzhi Liu
  • Patent number: 10329238
    Abstract: A method for isomerizing a starting mixture comprising 2,4-diamino-1-methylcyclohexane, 2,4-MDACH for short, 2,6-diamino-1-methylcyclohexane, 2,6-MDACH for short, or mixtures thereof, wherein the isomerization is carried out in the presence of a supported catalyst with zirconium dioxide as support and ruthenium as active metal.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: June 25, 2019
    Assignee: BASF SE
    Inventors: Andreas Weickgenannt, Sandra Kramp, Jan-Oliver Weidert, Alexander Panchenko, Artur Kozicki, Ralph Busch
  • Patent number: 10333050
    Abstract: The invention relates to a method for producing a composite comprising a high-temperature superconductor (HTS) layer based on rare earth metal-barium-copper oxide on a substrate with defined biaxial texture, having the following steps: applying a first HTS coating solution to the substrate, drying the first HTS coating solution to produce a first film, pyrolyzing the first film to produce a first pyrolyzed sublayer, removing an interfacial layer on the upper side of the first pyrolyzed sublayer to produce a first pyrolyzed sublayer with reduced layer thickness, applying a second HTS coating solution to the first pyrolyzed sublayer with reduced layer thickness, drying the second HTS coating solution to produce a second film, pyrolyzing the second film to produce a second pyrolyzed sublayer, optionally forming one or more further pyrolyzed sublayers on the second pyrolyzed sublayer, and crystallizing the overall layer formed from the pyrolyzed sublayers to complete the HTS layer, wherein the removal of the inte
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: June 25, 2019
    Assignee: BASF SE
    Inventors: Martina Falter, Oliver Thiems, Michael Baecker
  • Patent number: 10329374
    Abstract: The present invention relates to a process for preparing a thermoplastic copolymer from polycaprolactam and thermoplastic polyurethane (TPU), to thermoplastic copolymers thus obtained and to shaped articles formed from copolymers of this type.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: June 25, 2019
    Assignee: BASF SE
    Inventors: Philippe Desbois, Rajan Hollmann, Dirk Kempfert, Bernd Bruchmann, Frank Thielbeer, Rolf Muelhaupt
  • Patent number: 10329237
    Abstract: The present invention relates to a method for hydrogenating aromatic compounds with hydrogen in the presence of a catalyst, in which the catalyst comprises ruthenium on a zirconium oxide support material, and also the use of a catalyst comprising ruthenium on a zirconium oxide support material for hydrogenating aromatic compounds.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: June 25, 2019
    Assignee: BASF SE
    Inventors: Bernd Bastian Schaack, Martin Bock, Kirsten Dahmen
  • Patent number: 10329370
    Abstract: The present invention relates to a method for producing at least one resin, which comprises mixing at least one polyisocyanate with at least one polyepoxide, the reaction taking place in the presence of a catalyst system based on at least one metal-free Lewis base having at least one nitrogen atom, and also to resins obtainable by a method of the invention, and to the use of a resin obtainable by a method of the invention, or of a resin of the invention, for producing seals, for producing components for rotor blades, boat hulls, or vehicle body parts, or for coatings.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: June 25, 2019
    Assignee: BASF SE
    Inventors: Frank Prissok, Andre Kamm
  • Patent number: 10329402
    Abstract: The present invention relates to a plasticizer composition which comprises at least one cycloalkyl ester of saturated dicarboxylic acids and at least one 1,2-cyclohexanedicarboxylic ester, to molding compositions which comprise a thermoplastic polymer or an elastomer and this plasticizer composition, and to the use of these plasticizer compositions and molding compositions.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: June 25, 2019
    Assignee: BASF SE
    Inventors: Matthias Pfeiffer, Boris Breitscheidel, Axel Grimm, Herbert Morgenstern
  • Patent number: 10329372
    Abstract: The present invention relates to a process for the production of polyurethanes where (a) polyisocyanate, (b) polymeric compounds having groups reactive toward isocyanates, (c) catalysts, (d) polymer P formed from ethylenically unsaturated monomers and having an average of more than 2 functional groups of the formula —O—NH2 and optionally (e) blowing agent, (f) chain extender and/or crosslinking agent, and (g) auxiliaries and/or additives are mixed to give a reaction mixture, and the reaction mixture is allowed to complete a reaction to give the polyurethane. The present invention further relates to polyurethanes produced by this process and to the use of these polyurethanes in the interior of means of transport.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: June 25, 2019
    Assignee: BASF SE
    Inventors: Iran Otero Martinez, Peter Nesvadba, Julio Albuerne
  • Patent number: 10322603
    Abstract: A method and an apparatus for forming a surface relief microstructure, especially an optically variable image on a paper substrate are provided, the method comprising the steps of: A) applying a curable composition to at least a portion of the frontside of the paper substrate; B) contacting at least a portion of the curable composition with surface relief microstructure, especially optically variable image forming means; C) curing the composition by using at least one UV lamp (1, 2, 3) which is arranged on the backside of the paper substrate; D) optionally depositing a layer of a transparent high refractive index material and/or a metallic layer on at least a portion of the cured composition, wherein the lamp (1, 2, 3) having emission peak(s) in the UV-A and near VIS range and the curable composition comprises at least a photoinitiator which absorbs in the UV-A region and preferably in the near VIS range.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: June 18, 2019
    Assignee: BASF SE
    Inventors: Michelle Richert, Thomas Bolle, Roland Fleury
  • Patent number: 10323107
    Abstract: Unsaturated compounds of formula (I): wherein: R1, R2, and R3 are each independently H or CH3; R4 is a linear or branched C1-C30-alkylene; R5 and R6 are each independently H, C1-C20-alkyl, C3-C15-cycloalkyl, aryl, —CH2—O—C1-C20-alkyl, or —CH2—O—C2-C20-alkenyl, where R5 and R6 may together form a C3-C6-alkylene; R7 is independently H,C1-C4-alkyl, or where R8 is C1-C22-alkyl or C2-C22-alkenyl; and n is an integer from 2 to 200. Mixtures and polymers including the unsaturated compounds of formula (I). A method for preparing polymers by free-radical polymerization of monomers including the unsaturated compounds of formula (I). A process for preparing polymers including polymer-analogous reactions. And polymers including compounds (I) as cement additives, grinding aids, hydraulic binder additives, concrete plasticizers, reactive plasticizers for preparing plastics, rubber, or latex, associative thickeners and antioxidants, or for preparing polyether siloxanes.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: June 18, 2019
    Assignee: BASF SE
    Inventors: Sophie Maitro-Vogel, Martin Ernst, Christian Schade, Pavel Tuzina, Hoang Trang Tran-Thien, Eva-Maria Reis-Walther, Natalia Shabelina, Nina Susanne Hillesheim, Christian Scholz