Abstract: The present invention relates to pesticidal mixtures comprising as active components 1) at least one cyanosulfoximine compound I of the formula I wherein R1, R2 and G are defined as in the description; and 2) at least one fungicidal compounds II selected from azoles, strobilurins, carboxamides, carbamates, heterocyclic and various other compounds as defined in the description, in synergistically effective amounts. The invention relates further to methods and use of these mixtures for combating insects, arachnids or nematodes and harmful fungis in and on plants, and for protecting such plants being infested with pests, especially also for protecting seeds.
Type:
Application
Filed:
December 20, 2013
Publication date:
June 26, 2014
Applicant:
BASF SE
Inventors:
Delphine BREUNINGER, Henricus Maria Martinus BASTIAANS, Wolfgang VON DEYN, Matthias POHLMAN, Juergen LANGEWALD, Egon HADEN
Abstract: A paper coating or binding formulation comprises an aqueous polymer dispersion comprising a copolymer obtained by polymerization of an unsaturated monomer and a carbohydrate derived compound and a tetrasulfonate-based fluorescent whitening agent. The carbohydrate derived compound can be selected from the group consisting of dextrins, maltodextrins, and mixtures thereof. Methods of preparing a paper coating or binding formulation and improving the whitening properties of paper are also provided. Furthermore, paper including a copolymer obtained by polymerization of an unsaturated monomer and a carbohydrate derived compound and a tetrasulfonate-based fluorescent whitening agent is also disclosed.
Abstract: Hollow porous metal oxide microspheres are provided. The microspheres may be used as a support for a catalyst, particularly an exhaust treatment catalyst for an internal combustion engine. Also provided are methods of making the microspheres, methods of using the microspheres as catalyst supports, and methods of exhaust treatment using catalyst articles comprising the microspheres.
Type:
Application
Filed:
December 20, 2012
Publication date:
June 26, 2014
Applicant:
BASF Corporation
Inventors:
Pascaline Harrison Tran, Michael P. Galligan, Ye Liu, Xiaolin David Yang, Qingyuan Hu, Doan Lieu
Abstract: This invention relates to an improved chlorine dioxide solution or liquid mixture containing a phosphate and, as well, as to a composition for forming the chlorine dioxide and phosphate liquid mixture. This improved chlorine dioxide solution is used to clean and/or sanitize without causing corrosion. The corrosion nature of the chlorine dioxide solution is lessened due to the addition of phosphate to the composition.
Type:
Application
Filed:
February 27, 2014
Publication date:
June 26, 2014
Applicant:
BASF Corporation
Inventors:
Barry Keven Speronello, Frank Sebastian Castellano
Abstract: A rigid polyurethane foam includes the reaction product of an isocyanate and an isocyanate reactive component in the presence of a blowing agent. The isocyanate reactive component includes an aromatic polyester polyol, a rigid polyol, and an aliphatic polyester polyol. The rigid polyurethane foam has a tensile adhesion of greater than 35 kPa (5 psi) when disposed on a metal substrate or a polyester, polyurethane, or epoxy coated metal substrate, each having a substrate temperature of greater than 41° C. (105° F.), and tested in accordance with ASTM D1623-09. A method of forming a composite article comprising a substrate and the rigid polyurethane foam includes the steps of combining the isocyanate reactive component and the isocyanate in the presence of the blowing agent to form a reaction mixture and applying the reaction mixture to the substrate having a substrate temperature of greater than 41° C. (105° F.) to form the composite article.
Abstract: The present invention relates to N-thio-anthranilamide compounds of the formula (I), the stereoisomers, the salts, the tautomers and the N-oxides thereof, wherein R1 is halogen, methyl or halomethyl, R2 is hydrogen, halogen or cyano; R3 is hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, C2-C6-alkenyl or the like; R4 is halogen; R5 and R6 independently of each other are optionally substituted C1-C6-alkyl, C3-C6-cycloalkyl, C2-C6-alkenyl, C2-C6-alkynyl, phenyl, or together represent an (hetero)aliphatic chain, or the like; and k is 0 or 1.
Type:
Application
Filed:
August 10, 2012
Publication date:
June 26, 2014
Applicant:
BASF SE
Inventors:
Florian Kaiser, Karsten Körber, Prashant Deshmukh, Deborah L. Culbertson, Paul Neese, Koshi Gunjima
Abstract: The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a Yield Enhancing Protein (YEP). The YEP is selected from a Vacuolar Processing Enzyme (VPE) or a CCA1-like polypeptide or a SAP-like polypeptide or a Seed Yield Promoting Factor 1 (SYPF1) polypeptide or a Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activase (RCA) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding such a YEP, which plants have enhanced yield-related traits relative to control plants. The invention also provides hitherto unknown YEP-encoding nucleic acids, and constructs comprising the same, useful in performing the methods of the invention.
Type:
Application
Filed:
August 20, 2013
Publication date:
June 26, 2014
Applicant:
BASF Plant Science GmbH
Inventors:
Willem Broekaert, Christophe Reuzeau, Ana Isabel Sanz Molinero, Valerie Frankard
Abstract: The use of at least one diphosphine of formula (I), wherein X is S or O; n is 0 or 1; R1, R2, R3, R4 are independently C1-C10-alkyl, C1-C10-hydroxyalkyl, C1-C10-alkoxy, C1-C10-hydroxyalkoxy, C3-C10-cycloalkyl, C3-C10-cycloalkoxy, C6-C10-aryl, C6-C10-aryloxy, C6-C10-aryl-C1-C4-alkyl, C6-C10-aryl-C1-C4-alkoxy, C6-C10-hydroxy-aryl, C6-C10-hydroxy-aryloxy, C1-C10-thioalkyl, C6-C10-thioaryl or C1-C4-thioalkyl-C6-C10-aryl, NR5R6, COR2, COOR5 or CONR5R6; R5, R6 are H, C1-C10-alkyl, C3-C10-cycloalkyl, C6-C10-aryl or C6-C10-aryl-C1-C4-alkyl; as a flame retardant in a polyurethane material is provided.
Type:
Grant
Filed:
January 31, 2011
Date of Patent:
June 24, 2014
Assignee:
BASF SE
Inventors:
Marco Balbo Block, Jens Ferbitz, Oliver Steffen Henze, Christoph Fleckenstein, Klemens Massonne
Abstract: The invention relates to a process for the biocatalytic production of ambroxan by means of a polypeptide with the activity of a homofarnesol-ambroxan cyclase, which are a novel class of enzymes.
Type:
Grant
Filed:
June 2, 2010
Date of Patent:
June 24, 2014
Assignee:
BASF SE
Inventors:
Michael Breuer, Andrea Hörster, Bernhard Hauer
Abstract: The invention provides a process for preparing diphenylmethanediamine, comprising the steps of: a) reacting aniline with formaldehyde in the presence of an acid, b) neutralizing the predominant part of the acid with ammonia and/or aqueous ammonia solution, c) separating the reaction mixture from step b) into an aqueous phase and an organic phase, d) neutralizing the other part of the acid, present in the organic phase, with aqueous alkali metal hydroxide solution, e) separating the reaction mixture from step d) into an aqueous phase and an organic phase, f) treating the aqueous phase obtained in step c) or optionally the combined aqueous phases from steps c) and e) with at least one oxide or hydroxide of an alkaline earth metal, g) removing the ammonia obtained in step f).
Type:
Grant
Filed:
December 13, 2010
Date of Patent:
June 24, 2014
Assignee:
BASF SE
Inventors:
Markus Siegert, Torsten Mattke, Tilmann Steinmetz, Hans-Juergen Pallasch, Filip Nevejans
Abstract: The present invention relates to a process for the production of isocyanates, preferably diisocyanates and polyisocyanates of the diphenylmethane series (MDI), by reacting an amine with phosgene in the liquid phase or in the gas phase to form the corresponding isocyanates, subsequent removal of the solvent in at least two steps to obtain at least two solvent streams, individual treatment of the at least two solvent streams, and recirculation of at least a portion of the solvent streams.
Type:
Grant
Filed:
June 16, 2010
Date of Patent:
June 24, 2014
Assignee:
BASF SE
Inventors:
Heiner Schelling, Ulrich Penzel, Eckhard Stroefer, Matthias Eiermann, Jon S. Speier, Kai Thiele, Michael Bock
Abstract: Monomeric or polymeric compounds comprising at least one moiety of the formula (Ia) wherein X is CR, where R is H or a substituent as defined in claim 1, or is another ketopyrrole moiety e.g. of the formula (Ib) or (Ic) with this moiety and all other symbols are as defined in claim 1, show good solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the polymers according to the invention are used in semiconductor devices or organic photovoltaic (PV) devices (solar cells).
Type:
Grant
Filed:
October 16, 2008
Date of Patent:
June 24, 2014
Assignee:
BASF SE
Inventors:
Jean-Charles Flores, Ulrich Berens, Frank Bienewald, Hans Jürg Kirner, Mathieu G. R. Turbiez
Abstract: The present invention relates to a process for hydrogenating oligo- and/or polyesters obtainable by esterifying a DCS with a diol or diol mixture, said hydrogenation being performed in the presence of a catalyst whose catalyst precursor comprises copper oxide, aluminum oxide and at least one oxide of lanthanum, of iron, of tungsten, of molybdenum, of titanium or of zirconium, and to a process for preparing 1,6-hexanediol by catalytically hydrogenating ester mixtures which comprise, as main components, oligo- and polyesters of adipic acid and 6-hydroxycaproic acid, and are obtained by esterifying DCS with diols, especially 1,6-hexanediol or diol mixtures.
Abstract: The process for preparing a polyamide based on dicarboxylic acids and diamines has the following stages: 1) providing an aqueous monomer mixture of dicarboxylic acids and diamines, the molar ratio of dicarboxylic acids to diamines being adjusted such that a molar deficiency of dicarboxylic acids or diamines of from 1 to 10 mol % is present at the outlet of stage 3), based on the other component in each case, 2) transferring the aqueous mixture from stage 1) to a continuous evaporator reactor in which diamines and dicarboxylic acids are reacted at a temperature in the range from 100 to 370° C. and a pressure in the range from 1 to 50 bar, 3) transferring the mixture from stage 2) to a separator which is operated at a temperature in the range from 100 to 370° C.
Abstract: The invention relates to a process for preparing isocyanates by reacting the corresponding amines with phosgene, optionally in the presence of an inert medium, in which phosgene and amine are first mixed and converted to the isocyanate in a reactor, and in which a reaction gas which comprises isocyanate and hydrogen chloride leaving the reactor is cooled in a quench by adding a liquid quench medium to form a mixture of reaction gas and quench medium as the product stream. The walls of the quench are essentially completely wetted with a liquid.
Abstract: The present invention relates to a treatment system for a gasoline engine exhaust gas stream comprising a particulate filter, said particulate filter comprising: a particulate filter substrate, an inlet layer disposed on the exhaust gas inlet surface of the filter substrate, and an outlet layer disposed on the exhaust gas outlet surface of the filter substrate, wherein the inlet layer comprises Rh and/or Pd, and the outlet layer comprises Rh and/or a zeolite.
Type:
Grant
Filed:
June 30, 2010
Date of Patent:
June 24, 2014
Assignee:
BASF SE
Inventors:
Torsten Neubauer, Marcus Hilgendorff, Stephan Siemund, Alfred H. Punke, Gerd Grubert
Abstract: A process for producing compound C represented by formula C is disclosed: wherein R? represents substituent groups as described herein. The process can produce pyripyropene derivatives that have acyloxy groups at the 1- and 11-positions and a hydroxyl group at the 7-position and are useful as insect pest control agents at a high yield.
Abstract: The present invention relates to a process for the production of polyarylene ether block copolymers comprising, in a first stage, the reaction of at least one aromatic dihydroxy compound comprising 4,4?-dihydroxybiphenyl in a molar excess and of at least one aromatic dihalogen compound, to form a polybiphenyl sulfone polymer, and then, in a second stage, the reaction of the polybiphenyl sulfone polymer with at least one aromatic dihydroxy compound and of at least one aromatic dihalogen compound. The invention further relates to the resultant polyarylene sulfone block copolymers and to the use of the polyarylene sulfone block copolymers for the production of moldings, fibers, films, or foams.
Type:
Grant
Filed:
June 2, 2010
Date of Patent:
June 24, 2014
Assignee:
BASF SE
Inventors:
Martin Weber, Christian Schmidt, Alexander Khvorost, Cecile Gibon, Christian Maletzko
Abstract: The invention relates to a process for preparing aminoalkanamides by reacting cyanoalkanoic esters with a) ammonia or an amine and b) hydrogen in the presence of a catalyst, the reaction with component b) being started simultaneously or not later than a maximum of 100 minutes after commencement of the reaction of the cyanoalkanoic ester with component a).
Type:
Grant
Filed:
December 15, 2006
Date of Patent:
June 24, 2014
Assignee:
BASF SE
Inventors:
Martin Ernst, Andreas Kusche, Gunnar Heydrich, Horst Grafmans, Holger Evers, Johann-Peter Melder, Harald Meiβner, Torsten Freund
Abstract: A process for handling an active catalyst includes introducing a mixture of active catalyst particles and a molten organic substance, which is at a temperature Ti, and which sets at a lower temperature T2 so that T2<T1, into a mould. The mould is submerged in a cooling liquid, so as to cool the organic substance down to a temperature T3, where T3?T2. In this fashion, a casting comprising an organic substance matrix in which the active catalyst particles are dispersed, is obtained.
Type:
Grant
Filed:
May 20, 2010
Date of Patent:
June 24, 2014
Assignees:
Sasol Technology (Proprietary) Limited, BASF Nederland B.V.