Patents Assigned to BASF
  • Patent number: 8709975
    Abstract: The present invention relates to aqueous flowable concentrate compositions of a microencapsulated dinitroanline herbicide, in particular pendimethalin, which are flowable and have improved storage stability. The compositions contain: i. 50 to 400 g/l of a dinitroaniline herbicide in the form of microcapsules comprising a core material containing the dinitroaniline herbicide, in particular pendimethalin, and a polymeric wall material, the microcapsules being dispersed in an aqueous phase; ii. 100 to 500 g/l of a glyphosate salt which is dissolved in the aqueous phase and iii. at least one anionic surface-active substance.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 29, 2014
    Assignee: BASF SE
    Inventors: Terrance M. Cannan, Paul Ch. Kierkus
  • Publication number: 20140112853
    Abstract: Described are compositions and catalytic articles comprising a copper-promoted 8-ring small pore molecular sieve and an iron-promoted 8-ring small pore molecular sieve. The catalytic articles are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Applicant: BASF CORPORATION
    Inventors: Jaya L. Mohanan, Patrick Burk, Michael J. Breen, Barbara Slawski, Makato Nagata, Yasuyuki Banno, Eunseok Kim
  • Publication number: 20140110931
    Abstract: A method and an apparatus for forming a surface relief microstructure, especially an optically variable image on a paper substrate are provided, the method comprising the steps of: A) applying a curable composition to at least a portion of the frontside of the paper substrate; B) contacting at least a portion of the curable composition with surface relief microstructure, especially optically variable image forming means; C) curing the composition by using at least one UV lamp (1, 2, 3) which is arranged on the backside of the paper substrate; D) optionally depositing a layer of a transparent high refractive index material and/or a metallic layer on at least a portion of the cured composition, wherein the lamp (1, 2, 3) having emission peak(s) in the UV-A and near VIS range and the curable composition comprises at least a photoinitiator which absorbs in the UV-A region and preferably in the near VIS range.
    Type: Application
    Filed: June 20, 2012
    Publication date: April 24, 2014
    Applicant: BASF SE
    Inventors: Michelle Richert, Thomas Bolle, Roland Fleury
  • Publication number: 20140113987
    Abstract: The invention relates to the use of O-imino-iso-urea compounds as source of radicals to polymerizable compositions comprising these O-imino-iso-urea and to new O-imino-iso-urea compounds.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 24, 2014
    Applicant: BASF SE
    Inventors: Peter NESVADBA, Lucienne BUGNON FOLGER, Antoine CARROY, Marc FALLER, Bruno SPONY
  • Publication number: 20140114100
    Abstract: The present invention relates to a process for preparing cyclohexane from methylcyclopentane (MCP) and benzene. In the context of the present invention, MCP and benzene are constituents of a hydrocarbon mixture (HM1) additionally comprising dimethylpentanes (DMP), possibly cyclohexane and at least one compound (low boiler) selected from acyclic C5-C6-alkanes and cyclopentane. First of all, benzene is converted in a hydrogenation step to cyclohexane, while MCP is isomerized in the presence of a catalyst, preferably of an acidic ionic liquid, to cyclohexane. The hydrogenation is preceded by a prior removal of the dimethylpentanes (DMP), with initial removal of any cyclohexane present in the hydrocarbon mixture (HM1) together with DMP. This cyclohexane already present can be separated again from DMP in a downstream rectification step and recycled into the process for cyclohexane preparation.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 24, 2014
    Applicant: BASF SE
    Inventors: Steffen Tschirschwitz, Nicole Holub, Jochen Burkle, Oliver Christian Gobin, Markus Schmitt, Martin Bock, Aisha Ahmad Naddaf, Katharina SpuhI, Stefan Bitterlich, Daniel Pfeiffer
  • Publication number: 20140112852
    Abstract: Described is a selective catalytic reduction catalyst comprising an 8-ring small pore molecular sieve promoted with copper and an alkaline earth component. The catalyst is effective to catalyze the reduction of nitrogen oxides (NOx) in the presence of a reductant. A method for selectively reducing nitrogen oxides is also described.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Applicant: BASF Corporation
    Inventors: Jaya L. Mohanan, Patrick Burk, Makato Nagata, Yasuyuki Banno, Eunseok Kim
  • Publication number: 20140114103
    Abstract: The present invention relates to a process for preparing cyclohexane from benzene and/or methylcyclopentane (MCP) by hydrogenation or isomerization. Prior to the cyclohexane preparation, the dimethylpentanes (DMP) are removed in a distillation apparatus (D1) from a hydrocarbon mixture (HM1) comprising not only benzene and/or MCP but also DMP. If cyclohexane is already present in the hydrocarbon mixture (HM1), this cyclohexane is first removed together with DMP from benzene and/or MCP. This cyclohexane already present can be separated again from DMP in a downstream distillation step and recycled into the process for cyclohexane preparation.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 24, 2014
    Applicant: BASF SE
    Inventors: Markus Schmitt, Katharina Spuhl, Jochen Bürkle, Stefan Bitterlich, Steffen Tschirschwitz, Michael Hübner, Pawel Czajka
  • Publication number: 20140112854
    Abstract: Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Applicant: BASF CORPORATION
    Inventors: Jaya L. Mohanan, Patrick Burk, Michael J. Breen, Barbara Slawski, Makato Nagata, Yasuyuki Banno, Eunseok Kim
  • Publication number: 20140113981
    Abstract: Described is a process for the production of a pillared silicate. The process comprises (i) providing a layered silicate; (ii) interlayer expanding the layered silicate provided in step (i) comprising a step of treating the layered silicate with one or more swelling agents; (iii) treating the interlayer expanded silicate obtained in step (ii) with one or more hydrolyzable silicon containing compounds; (iv) treating the interlayer expanded compound obtained in step (iii) with an aqueous solution to obtain a pillared silicate; (v) removing at least a portion of the one or more swelling agents from the pillared silicate obtained in step (iv); and (vi) impregnating the pillared silicate obtained in step (v) with one or more elements selected from the group consisting of Fe, Ru, Ir, and combinations of two or more thereof. Also described is a pillared silicate optionally obtainable from said process and its use, in particular, in a process for the production of one or more olefins according to the invention.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Applicant: BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Xinhe Bao, Weiping Zhang, Dirk de Vos, Takashi Tatsumi, Feng-Shou Xiao, Hermann Gies, Hiroyuki Imai
  • Publication number: 20140110111
    Abstract: A proppant comprises a particle and a polymeric coating disposed about the particle. The polymeric coating comprises the reaction product of a novolac polyol, an isocyanate, and an azole. The novolac polyol has a number average molecular weight of from about 200 to about 1000 g/mol. A method of forming the proppant comprises the steps of providing the particle, providing the novolac polyol, providing the isocyanate, and providing the azole. The method also includes the steps of combining the novolac polyol, the isocyanate, and the azole to react and form the polymeric coating and coating the particle with the polymeric coating to form the proppant.
    Type: Application
    Filed: April 26, 2012
    Publication date: April 24, 2014
    Applicant: BASF SE
    Inventors: Christopher Tanguay, Rajesh Kumar
  • Publication number: 20140114087
    Abstract: The present invention relates to a process for preparing isocyanates by reacting amines with phosgene in the liquid phase, where phosgene, hydrogen chloride and isocyanates are separated with stripping columns operated at different pressures.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 24, 2014
    Applicant: BASF SE
    Inventors: Torsten MATTKE, Markus Hiller, Hans-Juergen Pallasch
  • Publication number: 20140114099
    Abstract: The present invention relates to a process for preparing cyclohexane by isomerizing a hydrocarbon mixture (HM1) comprising methylcyclopentane (MCP) in the presence of a catalyst. The catalyst is preferably an acidic ionic liquid. The starting material used is a stream (S1) which originates from a steamcracking process. The hydrocarbon mixture (HM1) obtained from this stream (S1) in an apparatus for aromatics removal has a reduced aromatics content compared to stream (S1), and (HM1) may optionally also be (virtually) free of aromatics. Depending on the type and amount of the aromatics remaining in the hydrocarbon mixture (HM1), especially in the case that benzene is present, the isomerization may additionally be preceded by performance of a hydrogenation of (HM1). In addition, depending on the presence of other components of (HM1), further purification steps may optionally be performed prior to or after the isomerization or hydrogenation.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 24, 2014
    Applicant: BASF SE
    Inventors: Steffen Tschirschwitz, Kathrin Wissel-Stoll, Jochen Bürkle, Albena Kostova, Markus Schmitt, Veronika Wloka, Stephan Deuerlein, Marco Bosch, Steffen Oehlenschläger, Michael Schreiber, Gauthier Luc Maurice Averlant, Joni Joni, Roman Prochazka, Martin Bock, Alois Kindler, Daniela Malkowsky, Katharina Spuhl, Stefan Bitterlich, Daniel Pfeiffer
  • Patent number: 8703862
    Abstract: The present invention relates to thermoplastic molding compositions composed of the following components: (A) at least one polyarylene ether (A1) having an average of at most 0.1 phenolic end groups per polymer chain, and at least one polyarylene ether (A2) having an average of at least 1.5 phenolic end groups per polymer chain, (B) at least one fibrous or particulate filler, and (C) optionally further additives and/or processing aids. The present invention further relates to a process for producing the thermoplastic molding compositions of the invention, the use of these for producing moldings, fibers, foams, or films, and to the resultant moldings, fibers, foams, and films.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 22, 2014
    Assignee: BASF SE
    Inventors: Martin Weber, Christian Maletzko, Mark Völkel
  • Patent number: 8703649
    Abstract: The present invention relates to formulation comprising at least (i) two pesticidal compounds A and B dissolved in a lactic acid ester and wherein a) both A and B have melting points below 900 C b) both A and B are selected from the following list: pyraclos-trobin, metalaxyl, mefenoxam, trifloxystrobin, imazalil, pro-chloraz and ipconazole with the proviso that A is different from B (ii) at least one pesticidal compound C present in solid particles, and having a melting point of 900 C and above, and to their use as seed treatment formulation as well as their use for plant protection, including seed and crop protection.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: April 22, 2014
    Assignee: BASF SE
    Inventors: Rafel Israels, Katharine Klamczynski, Marco Kuhns, Ulf Schlotterbeck
  • Patent number: 8703644
    Abstract: Aspects of the present invention relate to shaped bodies of compositions comprising a porous aromatic covalent framework polymer, wherein the polymer comprises at least one monomer unit, the at least one monomer unit comprising at least one aromatic ring and the at least one monomer unit having at least three binding sites to adjacent monomer units in the polymer and a core, wherein the at least three binding sites are located on at least one atom of the core and wherein the at least one atom is free of covalent bonds to hydrogen; and at least one binder additive. Other aspects of the invention relate to methods for the preparation of said shaped bodies and their uses.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: April 22, 2014
    Assignee: BASF SE
    Inventors: Manuela Gaab, Stefan Maurer, Wolf-Rüdiger Krahnert, Milan Kostur, Ulrich Müller, Ranjit Gokhale, Shrirang Bhikaji Hindalekar
  • Patent number: 8703879
    Abstract: A continuous process for the multistage drying and postcondensation of polyamide pellets in the solid phase comprises 1) carrying out the predrying process in a continuous drying apparatus which is operated in countercurrent mode or in crossflow mode with inert gas or steam, or with a mixture of inert gas and steam, using a pellet temperature in the range from 70 to 200° C., and 2) Carrying out the subsequent continuous postcondensation process in a separate vertical duct with moving bed at a pellet temperature in the range from 120 to 210° C., where the duct is operated in countercurrent mode with inert gas or steam, or with a mixture of inert gas and steam, the inert gas is introduced at least two sites along the duct, and from 15 to 90% of the inert gas is introduced at the base of the vertical duct and from 10 to 85% of the inert gas is introduced in the upper half below the surface of the pellets.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: April 22, 2014
    Assignee: BASF SE
    Inventors: Wolfgang Loth, Faissal-Ali El-Toufaili, Achim Stammer, Gad Kory, Achim Gerstlauer, Jens Becker
  • Patent number: 8703997
    Abstract: What is proposed is a process for preparation and distillative workup of diphenylmethane diisocyanate (MDI), proceeding from a benzene-comprising feedstream, in which, in a catalytic hydrogenation of nitrobenzene to aniline, steam is raised at two different pressure levels, which partly or completely covers the energy demand for the overall process, by using two fluidized bed reactors of identical design, of which a first fluidized bed reactor is operated with an aniline load for which the fluidized bed reactors have been designed and provides steam at a first, lower pressure level, and a second fluidized bed reactor is operated with a load lowered with respect to the first fluidized bed reactor to such an extent that the second fluidized bed reactor affords steam at the higher pressure level.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: April 22, 2014
    Assignee: BASF SE
    Inventors: Christian Schneider, Nikolaus Zafred, Andreas Heussler, Leo Denissen, Lucia Koenigsmann
  • Patent number: 8703847
    Abstract: The present invention is directed to a method for preparing a cellulose reactive adduct of polyvinylamide and a composition resulting from the method. The preparation of the cellulose reactive adduct is carried out close to a Critical Concentration defined herein. When the reaction is run close to this Critical Concentration, the risk of gelation is minimized, consumed glyoxal is maximized, and shelf live is enhanced. Additionally, the glyoxalated vinylamides of the present invention impart improved wet and dry strengthening efficiency to paper and paperboard when compared to adducts disclosed in previously described art.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: April 22, 2014
    Assignee: BASF SE
    Inventor: Matthew D. Wright
  • Patent number: D703306
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: April 22, 2014
    Assignee: BASF Corporation
    Inventors: Christopher K. Little, Lei Zhao, Chris McElroy, William F. Egan, David A. Smith
  • Patent number: D703307
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: April 22, 2014
    Assignee: BASF Corporation
    Inventors: Christopher K. Little, Chris McElroy, William F. Egan, David A. Smith, Lei Zhao