Patents Assigned to Bayer MaterialScience LLC
  • Patent number: 8765900
    Abstract: The present disclosure is directed to an aliphatic isocyanate-based moisture-curable resin. The disclosed resin may include an aliphatic isocyanate functional material and an cycloaliphatic isocyanate functional material. The resin may be used to formulate a coating composition that may exhibit no substantial sag when applied at a wet film thickness of at least 6 mils, and no substantial blistering when cured to a dry film thickness of at least 6 mils.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: July 1, 2014
    Assignee: Bayer MaterialScience LLC
    Inventors: Kurt E. Best, Michael K. Jeffries, Ahren Olson, Carl Angeloff
  • Patent number: 8758860
    Abstract: A process for endowing a polymeric article with a surface layer of an ion-conducting polymer to yield electrical surface resistivity sufficiently low for electrostatic discharge applications is provided. The polymeric article contains one or more immobilized, polymeric components having amine functional groups. The presence of the ion-conducting polymer in the surface layer lowers the surface electrical resistivity into the range suitable for electrostatic discharge applications, between about 1×105 and about 1×1012?/?. Plastic electrostatic dissipation materials produced by the inventive process may find use in the optical, electronics, automotive, entertainment, sporting goods, and medical sectors.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: June 24, 2014
    Assignee: Bayer MaterialScience LLC
    Inventors: Robert A. Pyles, Ronald C. Hedden
  • Patent number: 8742010
    Abstract: A polyaziridine introduced into a two-component waterborne polyurethane dispersion coating system increases the cure rate of a coating composition formed from the coating system.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: June 3, 2014
    Assignee: Bayer MaterialScience LLC
    Inventors: Kathy Allen, Jeanette Eastman, Kurt E. Best
  • Publication number: 20140131275
    Abstract: The present invention relates to a device for separating two immiscible phases and/or for extracting one phase with another phase (phase separation or extraction device), comprising at least one vessel for receiving the at least two phases, at least one pipe for supplying a fluid to the vessel, at least one pipe for discharging a fluid from the vessel, and at least one arrangement comprising a transparent disk for observing the separation operation or the extraction operation, wherein at least the side of the transparent disk that faces the phases to be separated or extracted consists of sapphire (sapphire glass) or mica ( mica disk), and to the use of such a device in the preparation of di- and polyamines of the diphenylmethane series.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Applicants: Bayer Intellectual Property GmbH, Bayer MaterialScience LLC
    Inventors: Bodo Temme, Stefan Wershofen, Thomas Knauf, Richard Adamson, Wolfgang Paura, Bernd Fruhen, Susan Dadd, Ralf Esser
  • Patent number: 8691895
    Abstract: A flame-retardant, optically clear thermoplastic molding composition is disclosed. The composition contains aromatic polycarbonate resin, a bromine-substituted carbonate oligomer, a phosphorous containing compound and an inorganic salt of perfluoroalkane sulfonic acid in amounts effective to impart to the composition flame resistance that in accordance with UL-94-5V standard is rated A at 3.00 mm and V-0 at 1.5 mm.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: April 8, 2014
    Assignee: Bayer MaterialScience LLC
    Inventors: Marina Rogunova, Nicolas Sunderland, Gerald A. Dibattista
  • Publication number: 20140094530
    Abstract: Polyurethane foams having a NFPA 101 Class B rating (ASTM E-84) which pass the FM 4450 calorimeter Test are produced by reacting: (a) an organic polyisocyanate, (b) at least one polyether polyol or polyester polyol with a nominal hydroxyl functionality of at least 2.0, (c) a blowing agent composition and (d) at least one halogen-free flame retardant. The blowing agent composition includes: (1) no more than 10% by weight, based on total weight of the foam-forming composition, of one or more hydrocarbons having an LEL less than 2% by volume in air, and/or (2) a hydrocarbon having an LEL greater than 2% by volume in air, and (3) up to 1% by weight, based on total weight of foam-forming composition, of water.
    Type: Application
    Filed: October 2, 2012
    Publication date: April 3, 2014
    Applicant: Bayer MaterialScience LLC
    Inventors: George G. Combs, Susan C. Pigott
  • Publication number: 20140066532
    Abstract: Polyurethane/polyisocyanurate foams having a NFPA 101 Class A rating (ASTM E-84) are produced from a foam-forming reaction mixture that includes: an organic polyisocyanate, an isocyanate-reactive composition that includes at least one polyether polyol or polyester polyol with a nominal hydroxyl functionality of at least 2.0, a blowing agent composition and at least one halogen-free flame retardant. The blowing agent composition includes: (1) up to 5% by weight, based on total weight of the foam-forming composition, of one or more hydrocarbons having an LEL less than 2% by volume in air; and/or (2) a hydrocarbon having an LEL greater than 2% by volume in air; and (3) up to 1% by weight, based on total weight of foam-forming composition, of water.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: Bayer MaterialScience LLC
    Inventors: George G. Combs, Susan C. Pigott
  • Publication number: 20140066536
    Abstract: This invention relates to polymer polyols comprising one or more base polyols; one or more ethylenically unsaturated monomers in which at least one of the monomers is styrene which contains less than or equal to 1000 ppm of impurities; with one or more preformed stabilizers; in the presence of at least one free radical polymerization initiator; and optionally, one or more chain transfer agents.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 6, 2014
    Applicant: Bayer MaterialScience LLC
    Inventors: Rick L. Adkins, Shriniwas S. Chauk, James R. Charron
  • Publication number: 20140058030
    Abstract: Composite materials including rubber particles and silane-terminated polyurethane binders are disclosed.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 27, 2014
    Applicant: Bayer MaterialScience LLC
    Inventors: Jay A. Johnston, Sandrea Zielinski
  • Patent number: 8658420
    Abstract: The present invention provides a flow-through photobioreactor containing at least one thermoplastic multi-wall sheet having an upper layer and a lower layer having arranged there between at least two sidewalls, at least one inner wall and two or more end caps. Also provided is a process for the production of a biofuel with the inventive photobioreactor. The photobioreactor and process of the present invention have the following advantages: genetically engineered microbes that give higher yields cannot escape into the environment, water in the system does not evaporate, no weeding (presence of unwanted algae), UV light from the sun is filtered out by the reactor walls, temperature control is possible, CO2 from power plants, breweries, etc. can be artificially fed to increase yield. The inventive photobioreactor is also less expensive to build than pipe reactors and may have low energy costs to operate, because little or no energy is needed for agitation and pumping in a preferred gravity assisted embodiment.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: February 25, 2014
    Assignees: Bayer MaterialScience LLC, Bayer MaterialScience AG
    Inventors: Rudiger Gorny, James P. Mason, Glenn Hilton, Peter Schwarz
  • Patent number: 8653157
    Abstract: A polyurethane compound is disclosed, comprising the reaction product of an isocyanate and one or more polyols including at least one polytetramethylene ether glycol and polyethylene wax. The latter two ingredients greatly enhance abrasion resistance of the compound, making the compound particularly suitable for use as an outsole of footwear for rugged use applications.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: February 18, 2014
    Assignee: Bayer MaterialScience LLC
    Inventors: Dave Schulte, Ulrich Holeschovsky
  • Publication number: 20140041287
    Abstract: The present invention provides highly fluorescent markers, made from a reactive polymer and an isocyanate, that fluoresce in the ultraviolet or near infrared region without being visible to the human eye at low concentrations in the fluid or article being marked. The molecular weight and fluorescence emission wavelength of these highly fluorescent marker compounds can be adjusted to provide a multitude of markers with unique fluorescence signatures.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 13, 2014
    Applicant: Bayer MaterialScience LLC
    Inventor: George G. Combs
  • Patent number: 8647471
    Abstract: The present invention relates to a process for the production of sized and/or wet-strength papers, paperboards or cardboards, wherein an aqueous radiation-curable dispersion containing water and at least one polymer, characterized in that the polymer contains cationic groups, is mixed with suspended wood pulp and/or chemical pulp and this mixture is sieved, pressed, thermally dried and then radiation-cured, characterized in that the dispersion is employed in amounts, based on its non-aqueous content in relation to the solid content of the wood pulp and/or chemical pulp, of from 0.001 to 10 wt. %, the papers, paperboards and cardboards produced by this process, and compositions comprising suspended wood pulp and/or chemical pulp and an aqueous radiation-curable dispersion containing at least one polymer, characterized in that the polymer contains cationic groups.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: February 11, 2014
    Assignees: Bayer MaterialScience LLC, Bayer MaterialScience AG
    Inventors: Stefan Sommer, Erhard Luehmann, Serkan Unal, Micheal J. Dvorchak
  • Publication number: 20140037874
    Abstract: The present invention relates to a non-aqueous coating composition comprising: 1) 75 to 99 wt. %, preferably 85 to 95 wt. % of a hard urethane(meth)acrylate polymer or oligomer; and 2) 1 to 25 wt. %, preferably 5 to 15 wt. % of a soft unsaturated urethane(meth)acrylate polymer or oligomer containing allophanate groups.
    Type: Application
    Filed: January 19, 2012
    Publication date: February 6, 2014
    Applicants: BAYER MATERIALSCIENCE AG, BAYER MATERIALSCIENCE LLC
    Inventors: Ramesh Subramanian, Abdullah Ekin, Carol Kinney, Christine Mebane, Wolfgang Fischer, Helmut Kuczewski
  • Patent number: 8642700
    Abstract: A thermoplastic composition suitable for making articles having low gloss and good impact resistance at low temperatures is disclosed. The composition contains (A) 10 to 90 percent relative to the weight of the composition (pbw) of an aromatic (co)poly(ester)carbonate, (B) 10 to 90 pbw of first graft (co)polymer containing a graft base selected from the group consisting of polyurethane, ethylene vinyl acetate, silicone, ethylene-propylene diene rubbers, ethylene propylene rubbers, acrylate rubbers, diene rubbers, and polychloroprene, and a grafted phase, (C) 1 to 20 pbw of a linear glycidyl ester functional polymer comprising repeating units derived from one or more glycidyl ester monomers and (D) 1 to 20 pbw of a second graft (co)polymer containing a core and shell wherein the core contains an interpenetrated network of poly(meth)alkyl acrylate and polyorganosiloxane, and wherein the shell contains poly(meth)acrylate.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: February 4, 2014
    Assignee: Bayer MaterialScience LLC
    Inventors: Marina Rogunova, James P. Mason, Xiangyang Li
  • Publication number: 20140024733
    Abstract: A polyether polyol based on renewable materials is obtained by the in situ production of a polyether from a hydroxyl group-containing vegetable oil, at least one alkylene oxide and a low molecular weight polyol having at least 2 hydroxyl groups. The polyol is produced by introducing the hydroxyl group-containing vegetable oil, a catalyst and an alkylene oxide to a reactor and initiating the alkoxylation reaction. After the alkoxylation reaction has begun but before the reaction has been 20% completed, the low molecular weight polyol having at least 2 hydroxyl groups is continuously introduced into the reactor. After the in situ made polyether polyol product having the desired molecular weight has been formed, the in situ made polyether polyol is removed from the reactor. These polyether polyols are particularly suitable for the production of flexible polyurethane foams.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: Bayer MaterialScience LLC
    Inventors: Jack R. Reese, Stanley L. Hager, Micah Moore
  • Publication number: 20130345476
    Abstract: This invention relates to an improved continuous process for the production of low molecular weight polyoxyalkylene polyether polyols. These polyoxyalkylene polyether polyols have a hydroxyl content of from about 3.4 to about 12.1% by weight, and may also be characterized as having an OH number of from about 112 to about 400. The process comprises establishing oxyalkylation conditions in a continuous reactor in the presence of a DMC catalyst; continuously introducing alkylene oxide and a low molecular weight starter into the continuous reactor; recovering a partially oxyalkylated polyether polyol from the reactor; and allowing the recovered partially oxyalkylated polyether polyol to further reactor until the unreacted alkylene oxide content of the mixture is reduced to 0.001% or less by weight.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: Bayer MaterialScience LLC
    Inventor: Jack R. Reese
  • Patent number: 8598248
    Abstract: The present invention provides flexible conventional polyurethane foams made from at least one polyisocyanate and at least one vegetable oil alkoxylated in the presence of a double metal cyanide (DMC) catalyst, optionally at least one non-vegetable oil-based polyol, generally in the presence of a blowing agent and optionally in the presence of a surfactant, pigment, flame retardant, catalyst or filler. The alkoxylated natural oil must have (a) an ethylene oxide content in the alkoxylated segment greater than 20% by weight, (b) a primary hydroxyl group content of at least 10%, with the sum of (a)+(b) being at least 30% but no greater than 60%, The alkoxylated natural oils are environmentally-friendly, bio-based polyols which can be used to increase the “green” content of polyurethane foams without having detrimental effects on foam properties.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 3, 2013
    Assignee: Bayer MaterialScience LLC
    Inventors: Stanley L. Hager, Edward P. Browne, Jack R. Reese, Don S. Wardius, Micah N. Moore
  • Patent number: 8580573
    Abstract: The present invention provides highly fluorescent markers, made from a reactive polymer and an isocyanate, that fluoresce in the ultraviolet or near infrared region without being visible to the human eye at low concentrations in the fluid or article being marked. The molecular weight and fluorescence emission wavelength of these highly fluorescent marker compounds can be adjusted to provide a multitude of markers with unique fluorescence signatures.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: November 12, 2013
    Assignee: Bayer MaterialScience LLC
    Inventor: George G. Combs
  • Publication number: 20130289150
    Abstract: A viscoelastic foam is produced by reacting (a) an isocyanate component that includes at least 25% by weight of diphenylmethane diisocyanate having a monomeric content of from 50 to 90% by weight, (b) an isocyanate-reactive component, (c) at least one catalyst, (d) at least one surface active agent, and (e) liquid carbon dioxide. These foams are characterized by a ball rebound of less than 20%. Particularly preferred foams are characterized by a 95% height recovery time greater than 4 seconds.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 31, 2013
    Applicants: Bayer MaterialScience AG, Bayer MaterialScience LLC
    Inventors: Stanley L. Hager, Susan McVey, Glenn Dephillipo, Matthaeus Gossner, Manfred Naujoks, Sven Meyer-Ahrens, Alan A.E. Marcinkowsky