Abstract: Inadequate growth due to deficiencies in growth hormone (GR), growth hormone releasing hormone (GHRH), or genetic diseases can be ameliorated utilizing recombinant protein therapy with a novel GHRH analog having a sequence (SEQ ID NO:1). Also included is (1) a method of treating growth hormone-related deficiencies associated with the growth hormone pathway; (2) a method for treating growth hormone-related deficiencies associated with genetic disease; (3) a method to improve growth performance in an animal; (4) a method of treating an animal having a growth deficiency disease; (5) a method of increasing the efficiency of an animal used for food; and, (6) a method to enhance growth in an animal.
Type:
Grant
Filed:
July 24, 2000
Date of Patent:
April 22, 2003
Assignee:
Baylor College of Medicine
Inventors:
Robert J. Schwartz, Ruxandra Draghia-Alki
Abstract: The invention concerns making and evaluating synthetic regulatory regions for controlling gene expression. The invention features a method for identifying transcription factor binding sites and a method for evaluating the regulatory functions of synthetic regulatory regions.
Type:
Application
Filed:
May 1, 2002
Publication date:
April 10, 2003
Applicant:
Baylor College of Medicine
Inventors:
Robert J. Schwartz, Eric M. Eastman, Xuyang Li, Jeff Nordstrom
Abstract: The invention relates to methods for the isolation of metastatic sequences and the isolated sequences. Cells from a cell line or an animal tissue are treated to form a cell line predisposed to cancer. Treated cells are implanted in an animal and incubated for a period of time sufficient for the cells to proliferate and develop malignant transplants. RNA from the malignant transplant and the primary tumor are analyzed by differential display polymerase chain reaction. Differentially expressed genes are cloned, reanalyzed, and sequenced. These genes and sequences can be used as probes in the diagnosis of neoplastic disorders, as probes to isolate metastatic sequences and as a therapeutic agent in the treatment of neoplastic disorders. The metastatic sequence may be a dominant metastatic sequence or a recessive metastatic sequence.
Abstract: A device for measuring parameters of human tissue includes a multielectrode catheter for taking multiple measurements of the electrical characteristics of the human tissue, a concentric tube catheter located inside the multielectrode catheter, for providing structural support to the multi-electrode catheter and for serving as a conduit for advancing or withdrawing the multielectrode catheter over its surface; and an imaging catheter located inside the concentric tube catheter for taking multiple measurements of anatomical characteristics of the human tissue.
Abstract: In one embodiment, the present invention is directed to a first oligonucleotide comprising the sequence of or derived from 5′-CTAGGGCGGGCGGGACTCACCTAC-3′ or the nucleic acid sequence complementary thereto. The first oligonucleotide can be used with a nucleic acid of between 15 and 30 nucleotides that does not comprise the sequence of the first oligonucleotide and is found in the region from V&bgr; to J&bgr; of the V&bgr;13.1 gene in V&bgr;13.1 T cells, wherein the sequences of the oligonucleotide and the nucleic acid are not found on the same strand of the V&bgr;13.1 gene pair, to amplify a portion of the V&bgr;13.1 gene. Alternatively, the first oligonucleotide can be used with a labeling moiety in methods of detecting a LGRAGLTY motif found in T cell receptors of V&bgr;13.1 T cells. This motif is associated with autoimmune diseases, such as multiple sclerosis (MS). Once the motif is detected, the autoimmune disease can be treated or its progress monitored.
Abstract: Vectors which establish controlled expression of recombinant GHRH genes within tissues at certain levels. The vector includes a 5′ flanking region which includes necessary sequences for expression of a nucleic acid cassette, a 3′ flanking region including a 3′ UTR and/or 3′ NCR, and a linker which connects the 5′ flanking region to a nucleic acid sequence. The linker has a position for inserting a nucleic acid cassette. The linker does not contain the coding sequence of a gene that the linker is naturally associated with. The 3′ flanking region is 3′ to the position for inserting the nucleic acid cassette.
Type:
Application
Filed:
April 16, 2002
Publication date:
March 20, 2003
Applicant:
Baylor College of Medicine and GeneMedicine
Inventors:
Robert J. Schwartz, Ruxandra Draghia-Akli, Xuyang Li, Eric M. Eastman
Abstract: This invention relates to a method of potentiating an immune response by administering a viral enterotoxin or derivative as an adjuvant. More particularly it relates to administering a viral enterotoxin or derivative as an adjuvant and an antigen to a mucosal surface of a mammal.
Abstract: The present invention comprises a sample presentation apparatus for mass spectrometry. More particulary, a complex is immoblized on the sample presenting surface.
Abstract: The invention provides compositions and methods for generating a molecular profile of genomic DNA by hybridization of labeled nucleic acid representing the genomic DNA to immobilized nucleic acid probes, e.g., arrays or biochips.
Type:
Application
Filed:
July 26, 2002
Publication date:
January 2, 2003
Applicant:
Baylor College Medicine, a Texas corporation
Abstract: Assays for analyzing or genotyping a test sample comprising nucleic acid are described, wherein the assays comprise contacting a prepared test sample containing nucleic acid with an array comprising a set of oligonucleotides attached to a solid support at identifiable locations, wherein each oligonucleotide in the set comprises a first boundary sequence at a proximal end of the oligonucleotide, a second boundary sequence at a distal end of the oligonucleotide, a nucleic acid marker between the first and second boundary sequences, and a label at the distal end of the oligonucleotide; maintaining the contacted array under conditions which allow hybridization of nucleic acid in the test sample to the oligonucleotides of the array; subjecting the hybridized array to a cleavage agent, wherein the cleavage agent cleaves incompletely hybridized oligonucleotides but does not cleave completely hybridized oligonucleotides; washing the cleaved array to remove cleavage products from the cleaved array; and assessing a pat
Abstract: The present invention provides mutant proteins of steroid hormone receptors. These mutant proteins are useful in methods of distinguishing a steroid hormone receptor antagonist from a steroid hormone receptor agonist. The present invention also provides plasmids containing mutated steroid hormone receptor proteins and cells transfected with those plasmids. In addition, the present invention provides methods for determining whether a compound is a steroid hormone receptor antagonist or agonist. Also, the present invention provides methods of determining endogenous ligands for steroid hormone receptors. The invention further provides a molecular switch protein for regulating expression in gene therapy.
Type:
Application
Filed:
April 16, 2002
Publication date:
December 5, 2002
Applicant:
Baylor College of Medicine
Inventors:
Bert W. O'Malley, Ming-Jer Tsai, Sophia Y. Tsai, Harry C. Ledebur, Yaolin Wang, Joseph D. Kittle
Abstract: Peptide-macromolecule complexes for delivery of nucleic acid to a cell. The nucleic acid carrier includes a binding complex. The binding complex contains a binding moiety which noncovalently binds to the nucleic acid. The binding complex can also contain a binding moiety which is associated with a surface ligand, nuclear ligand or a lysis agent. These may be associated with the binding moiety by spacers. In addition, the carrier may include a nucleic acid with a combination of the above binding complexes or binding moieties.
Type:
Application
Filed:
March 12, 2001
Publication date:
November 21, 2002
Applicant:
Baylor College of Medicine
Inventors:
Louis C. Smith, James T. Soarrow, Jochen Hauer, Martha P. Mims
Abstract: A biofilm penetrating composition for coating medical devices for substantially preventing the growth or proliferation of biofilm embedded microorganisms on at least one surface of the medical device is disclosed. A biofilm penetrating composition solution for cleaning medical devices which is capable of substantially removing all of the biofilm embedded microorganisms from at least one surface of medical devices is also disclosed. The biofilm penetrating composition coating and solution include a biofilm penetrating agent and may also include a base material. Medical devices coated with the biofilm penetrating composition and methods for coating medical devices and methods for removing biofilm embedded microorganisms from at least one surface of the medical devices are also disclosed.
Abstract: The present invention is directed to screening for an agent that inhibits the effect of a neurotoxin from a plaque component activated mononuclear phagocyte on a neuron. In addition, the present invention is directed to methods of screening for agents that inhibit mononuclear phagocyte-plaque component complex formation, plaque component activation of a mononuclear phagocyte, plaque component induced neurotoxicity of a mononuclear phagocyte. An agent obtained by the method of screening for an agent that inhibits mononuclear phagocyte-plaque component complex formation and a pharmaceutical composition comprising the agent are embodied by the present invention.
Abstract: The present invention is directed to screening for an agent that inhibits the effect of a neurotoxin from a plaque component activated mononuclear phagocyte on a neuron. In addition, the present invention is directed to methods of screening for agents that inhibit mononuclear phagocyte-plaque component complex formation, plaque component activation of a mononuclear phagocyte, plaque component induced neurotoxicity of a mononuclear phagocyte. An agent obtained by the method of screening for an agent that inhibits mononuclear phagocyte-plaque component complex formation and a pharmaceutical composition comprising the agent are embodied by the present invention.
Abstract: The present invention involves the creation of defined chromosomal deficiencies, inversions and duplications using Cre recombinase in ES cells transmitted into the mouse germ line. These chromosomal reconstructions can extend up to 3-4 cM. Chromosomal rearrangements are the major cause of inherited human disease and fetal loss. Additionally, translocations and deletions are recognized as major genetic changes that are causally involved in neoplasia. Chromosomal variants such as deletions and inversions are exploited commonly as genetic tools in organisms such as Drosophila. Mice with defined regions of segmental haploidy are useful for genetic screening and allow accurate models of human chromosomal diseases to be generated.
Type:
Grant
Filed:
April 19, 2000
Date of Patent:
October 8, 2002
Assignee:
Baylor College of Medicine
Inventors:
Allan Bradley, Ramiro Ramirez-Solis, Pentao Liu, Hong Su, Binhai Zheng
Abstract: The present invention is directed to methods that can used for biotin labeling polypeptides in mammalian cells. The methods can be effectively used for cytoplasmic proteins, secreted proteins, and for proteins found on viral surfaces.
Abstract: The present invention is directed to screening for an agent that inhibits the effect of a neurotoxin from a plaque component activated mononuclear phagocyte on a neuron. In addition, the present invention is directed to methods of screening for agents that inhibit mononuclear phagocyte-plaque component complex formation, plaque component activation of a mononuclear phagocyte, plaque component induced neurotoxicity of a mononuclear phagocyte. An agent obtained by the method of screening for an agent that inhibits mononuclear phagocyte-plaque component complex formation and a pharmaceutical composition comprising the agent are embodied by the present invention.
Abstract: The present invention provides transcription factors associated with the hedgehog signaling pathway that are regulated by dephosphorylation by phosphatases. Hedgehog response elements (HRE) that interact with the dephosphorylated transcription factors are also provided as well as methods for identifying compounds that are phosphatase inhibitors. Methods of treating tumors in a subject by modulating the phosphorylation of the transcription factor are also included.
Type:
Application
Filed:
August 21, 2001
Publication date:
August 1, 2002
Applicant:
Baylor College of Medicine
Inventors:
Philip A. Beachy, Ming-Jer Tsai, Sophia Tsai, Venkatesh Krishnan, Chien-Huan Chen