Patents Assigned to BEIJING VOYAGER TECHNOLOGY CO., LTD.
  • Patent number: 11835655
    Abstract: Embodiments of the disclosure provide a mirror assembly for controlling optical directions in an optical sensing system. The mirror assembly may include a frame and a beam structure mechanically coupled to the frame. The beam structure may define a rotational axis. The mirror assembly may also include a micro mirror suspended by the beam structure. The mirror assembly may further include a plurality of piezoelectric actuators mechanically coupled to the frame and configured to rotate the micro mirror along the rotational axis. Each of the plurality of piezoelectric actuators may be disposed between the rotational axis and an outer edge of the frame.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: December 5, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Sergio Almeida, Yufeng Wang, Sae Won Lee, Youmin Wang
  • Patent number: 11822069
    Abstract: Embodiments of the disclosure provide a micromachined mirror assembly for controlling optical directions in an optical sensing system. The micromachined mirror assembly may include a micro mirror configured to direct an optical signal into a plurality of directions. The micromachined mirror assembly may also include at least one actuator coupled to the micro mirror and configured to drive the micro mirror to tilt around an axis. The micromachined mirror assembly may further include one or more objects attached to the micro mirror. The one or more objects may be asymmetrically disposed with respect to the axis to create an imbalanced state of the micro mirror when the micro mirror is not driven by the at least one actuator.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: November 21, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng Wang, Qin Zhou
  • Patent number: 11815627
    Abstract: In one example, an apparatus that is part of a Light Detection and Ranging (LiDAR) module of a vehicle comprises a semiconductor integrated circuit comprising a microelectromechanical system (MEMS) and a substrate. The MEMS comprises an array of micro-mirror assemblies, each micro-mirror assembly comprising: a micro-mirror having a first thickness; and an actuator comprising first fingers and second fingers, the first fingers being connected with the substrate, the second fingers being mechanically connected to the micro-mirror having a second thickness smaller than the first thickness, the actuator being configured to generate an electrostatic force between the first fingers and the second fingers to rotate the micro-mirror to reflect light emitted by a light source out of the LiDAR module or light received by the LiDAR module to a receiver.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: November 14, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Youmin Wang, Yufeng Wang, Qin Zhou, Gary Li
  • Patent number: 11809790
    Abstract: Systems and methods are provided for the accurate reproduction during simulation of distributed systems, such as vehicle-based processing systems. In a simulation, the execution times of individual tasks are aligned to those of a recorded process. Data consumed during the recorded process is also consumed during the corresponding portion of the simulation, and data generated during the simulation is associated with timing data from data generated during the recorded processes.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: November 7, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Yuzhu Shen, Yun Jiang, Alok Priyadarshi
  • Patent number: 11796638
    Abstract: In one example, an apparatus being part of a Light Detection and Ranging (LiDAR) module is provided. The apparatus comprises a microelectromechanical system (MEMS) and a substrate. The MEMS comprising an array of micro-mirror assemblies, each micro-mirror assembly comprises: a first flexible support structure and a second flexible support structure connected to the substrate; a micro-mirror comprising a first connection structure and a second connection structure, the first connection structure being connected to the first flexible support structure at a first connection point, the second connection structure being connected to the second flexible support structure at a second connection point, the first and second connection points being aligned with a rotation axis around which the micro-mirror rotates, the first flexible support structure and the second flexible support structure being configured to allow the first and second connection points to move when the micro-mirror rotates.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: October 24, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Youmin Wang, Yufeng Wang, Qin Zhou, Gary Li, Sergio Fabian Almeida Loya
  • Patent number: 11792293
    Abstract: A method for data processing is provided. The method may include: preprocessing initial data to obtain preprocessed data; storing the preprocessed data; receiving a data request made through an application, the data request including information relating to a storage path of contents that are requested; in response to the data request, determining, by a nearby proxy of a first proxy cluster in a first region, whether the contents requested in the data request are cached locally; and in response to a determination that the contents are cached locally, providing, by the nearby proxy, the contents to the application; or in response to a determination that the contents are not cached locally, acquiring, by the nearby proxy, the contents based on the information relating to the storage path of the contents; and providing, by the nearby proxy, the contents to the application.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: October 17, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Fenglei Wang, Lingang Min
  • Patent number: 11789253
    Abstract: According to certain embodiments, a micro-electromechanical system (MEMS) apparatus has a MEMS mirror structure with a rotatable mirror. Rotation of the mirror produces a change in a measured capacitance corresponding to an angle of rotation. The MEMS structure sits on an oxide layer deposited on a substrate. There is a parasitic capacitance between the MEMS mirror structure and the substrate. An added capacitance is provided between the substrate and a DC voltage source. The added capacitance is much larger than the parasitic capacitance, and shunts the parasitic capacitance to ground to minimize its effect on the measured capacitance.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: October 17, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Sergio Fabian Almeida Loya, Zuow-Zun Chen, Qin Zhou, Youmin Wang
  • Patent number: 11768367
    Abstract: A piezoelectric actuator including an anchor, an elastic layer having a first end coupled to the anchor, and a piezoelectric layer on the elastic layer. The elastic layer includes a solid sublayer including an elastic material and a second sublayer including a plurality of cavities. The piezoelectric layer is on the second sublayer of the elastic layer and includes a top electrode, a bottom electrode, and a piezoelectric material layer between the top electrode and the bottom electrode.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: September 26, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Sae Won Lee, Youmin Wang, Yufeng Wang
  • Patent number: 11747470
    Abstract: In one example, a semiconductor integrated circuit is provided. The semiconductor integrated circuit includes a microelectromechanical system (MEMS), a substrate on which the MEMS is formed, and a controller, the MEMS including one or more micro-mirror assemblies, each micro-mirror assembly including: a micro-mirror comprising a first connection structure and a second connection structure, the first connection structure being connected to the substrate at a first pivot point, the second connection structure being connected to the substrate at a second pivot point; an actuator configured to rotate the micro-mirror; and a measurement circuit configured to measure an electrical resistance of at least one of the first connection structure or the second connection structure. The controller is configured to control the actuator of each of the one or more micro-mirror assemblies based on the electrical resistance measurements from the measurement circuits.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: September 5, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Sergio Fabian Almeida Loya, Youmin Wang
  • Patent number: 11747472
    Abstract: Embodiments of the disclosure provide an optical sensing system, a range estimation system for the optical sensing system, and a method for the optical sensing system. The exemplary optical sensing system includes a transmitter configured to emit a plurality of laser pulses towards an object. The optical sensing system further includes a range estimation system configured to estimate a range between the object and the optical sensing system. The range estimation system includes an analog to digital converter (ADC) configured to convert a plurality of laser pulses returned from an object to a digital signal. The ADC has a predetermined sampling period. The exemplary system further includes a processor. The processor is configured to calculate an intensity ratio between two data points selected from the digital signal.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: September 5, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Qin Zhou, Youmin Wang
  • Publication number: 20230258781
    Abstract: Embodiments of the disclosure provide for a LiDAR system. The LiDAR system may generate a first FOV that is large and has rough resolution and a second FOV that is smaller and has a finer resolution. For an area of importance, such as along the horizon where pedestrians, vehicles, or other objects may be located, the second FOV with the finer resolution may be used. Using fine resolution for the area of importance may achieve a higher-degree of accuracy/safety in terms of autonomous navigation decision-making than if coarse resolution is used. Because the use of fine resolution is limited to a relatively small area, a reasonably sized photodetector and laser power may still be used to generate a long distance, high-resolution point-cloud.
    Type: Application
    Filed: February 16, 2022
    Publication date: August 17, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yonghong GUO, Youmin WANG, Yue LU
  • Publication number: 20230258806
    Abstract: Embodiments of the disclosure provide for a LiDAR system. The LiDAR system may dynamically select a first FOV of a far-field environment to be scanned at a rough resolution and a second FOV including important information, as indicated based on object data from a previous scanning procedure, to be scanned at a fine resolution. For example, an area-of-interest, such as along the horizon where pedestrians, vehicles, or other objects may be located, may be scanned with the finer resolution. Using fine resolution for the area-of-interest may achieve a higher-degree of accuracy/safety in terms of autonomous navigation decision-making than if coarse resolution is used. Because the use of fine resolution is limited to a relatively small area, a reasonably sized photodetector and laser power may still be used to generate a long distance, high-resolution point-cloud.
    Type: Application
    Filed: February 22, 2022
    Publication date: August 17, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yonghong GUO, Youmin WANG, Yue LU
  • Patent number: 11726183
    Abstract: Embodiments of the disclosure provide a micromachined mirror assembly for controlling optical directions in an optical sensing system. The micromachined mirror assembly includes a micro mirror and at least one piezoelectric actuator. The micro mirror is suspended over a substrate by at least one beam mechanically coupled to the micro mirror, and the at least one piezoelectric actuator is mechanically coupled to the at least one beam and is configured to drive the micro mirror via the at least one beam. The at least one piezoelectric actuator is configured to drive the micro mirror to tilt along a first axis based on a first electrical signal received by the at least one piezoelectric actuator.
    Type: Grant
    Filed: October 19, 2019
    Date of Patent: August 15, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng Wang, Qin Zhou
  • Patent number: 11719546
    Abstract: Systems and methods are provided for probabilistic navigation planning. An exemplary probabilistic navigation method may comprise: obtaining a map of an environment comprising one or more first objects each associated with a probability model; obtaining one or more global factors and local factors to update the probability models, wherein the global factors apply to all of the first objects and the local factors apply to a portion of the first objects; and determining a navigation for a second object through at least a part of the environment based at least on minimizing a total collision probability with the first objects along the navigation according to the updated probability models.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: August 8, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventor: Zafar Takhirov
  • Patent number: 11720094
    Abstract: Technologies disclosed relate to a remote intervention system for the operation of a vehicle, which can be an autonomous vehicle, a vehicle that includes driver assist features, a vehicle used for ride sharing services or the like. The system includes a remote operator receiving a request for remote intervention from a vehicle when the operation of the vehicle is suspended and sending a response to the vehicle. The vehicle can transmit visual data detected by one or more sensors on the vehicle to the remote operator. The remote operator can output a response after analyzing the visual data transmitted by the vehicle. The remote operator can be a human operator or an AI operator. The response can result in an update of the vehicle operation.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: August 8, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventor: Qi Chen
  • Patent number: 11715930
    Abstract: A system for controlling a pulsed laser diode includes a power source configured to supply power to the pulsed laser diode and at least one driving branch between the power source and the pulsed laser diode. The at least one driving branch is configured to control power delivery from the power source to the pulsed laser diode. The at least one driving branch is connected to a cathode of the pulsed laser diode.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: August 1, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yibo Yu, Yue Lu, Vipul Chawla, Zhenghan Zhu, Lingkai Kong
  • Patent number: 11708088
    Abstract: A computer-implemented method for controlling a vehicle comprises: receiving tracking data associated with a surrounding environment of the vehicle; detecting, based upon the tracking data, an object in the surrounding environment of the vehicle; determining a location of the object; determining, based on navigation assistance data, whether the location of the object is at least partially within a classified area in the surrounding environment; and configuring a control system of the vehicle to: initiate, based upon determining that the location of the object is not at least partially within the classified area, a first collision avoidance response procedure for responding to the object; and initiate, based upon determining that the location of the object is at least partially within the classified area, a second collision avoidance response procedure for responding to the object, the second collision avoidance response procedure different from the first collision avoidance response procedure.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: July 25, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventor: Yue Liu
  • Patent number: 11706027
    Abstract: Systems and methods for managing a compromised autonomous vehicle server are described herein. A processor may obtain an indication of a first server configured to control an autonomous vehicle being compromised. The autonomous vehicle may have previously been provisioned with a first public key. The first public key may be paired with a first private key. A processor may compile command information. The command information may include a command for the autonomous vehicle and a digital certificate of a second server configured to control the autonomous vehicle in the event of the first server being compromised. The digital certificate may include a second public key and may be signed with the first private key. The command may be signed with a second private key associated with the second server. The second private key may be paired with the second public key.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: July 18, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Jiang Zhang, Xiaoyong Yi, Liwei Ren
  • Publication number: 20230221440
    Abstract: Embodiments of the disclosure provide an optical sensing system, and an optical sensing method for the optical sensing system. The optical sensing system includes an integrated optical source and a receiver coupled to the integrated optical source. The integrated optical source includes a laser diode configured to emit optical signals, and a first diffraction grating unit configured to simultaneously tune wavelengths and directions of the emitted optical signals. The optical signals of different wavelengths are directed along different directions towards an environment surrounding the optical sensing system. The receiver is configured to receive at least a portion of the optical signals returned from the environment. The receiver includes a second diffracting grating unit configured to direct the received portion of optical signals with the different wavelengths along different directions towards a sensor array.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 13, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: An-Chun Tien, Youmin Wang
  • Publication number: 20230204944
    Abstract: Embodiments of the disclosure provide a scanning mirror assembly. In certain configurations, the scanning mirror assembly may include a two-dimensional micro-electromechanical system (MEMS) scanning mirror, a first pair of piezoelectric electrodes coupled to the MEMS scanning mirror through a first pair of looped torsion springs, and a second pair of piezoelectric electrodes coupled to the MEMS scanning mirror through a second pair of looped torsion springs. The first pair of piezoelectric electrodes drives the MEMS scanning mirror to rotate around a first axis. The second pair of piezoelectric electrodes drives the MEMS scanning mirror to rotate around a second axis orthogonal to the first axis.
    Type: Application
    Filed: December 30, 2021
    Publication date: June 29, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng Wang, Kong Yin Ho, Gary Li