Patents Assigned to BFLY OPERATIONS, INC.
  • Publication number: 20220179058
    Abstract: Circuitry for ultrasound devices is described. A multilevel pulser is described, which can provide bipolar pulses of multiple levels. The multilevel pulser includes a pulsing circuit and pulser and feedback circuit. Symmetric switches are also described. The symmetric switches can be positioned as inputs to ultrasound receiving circuitry to block signals from the receiving circuitry.
    Type: Application
    Filed: February 28, 2022
    Publication date: June 9, 2022
    Applicant: BFLY Operations, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston, Keith G. Fife
  • Patent number: 11350911
    Abstract: A time gain compensation (TGC) circuit for an ultrasound device includes a first amplifier having an integrating capacitor and a control circuit configured to generate a TGC control signal that controls an integration time of the integrating capacitor, thereby controlling a gain of the first amplifier. The integration time is an amount of time an input signal is coupled to the first amplifier before the input signal is isolated from the first amplifier.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: June 7, 2022
    Assignee: BFLY OPERATIONS, INC.
    Inventors: Kailiang Chen, Keith G. Fife
  • Patent number: 11354926
    Abstract: Aspects of the technology described herein relate to sensing a fingerprint of a subject via an ultrasound fingerprint sensor. Certain aspects relate to transmitting and receiving ultrasound data at multiple different frequencies to provide sensing data from different depths within the skin of the subject. Since different ultrasound frequencies are expected to penetrate a subject's skin to different degrees, sensing a finger at multiple ultrasound frequencies may provide information on different physical aspects of the finger. For instance, sound ultrasound frequencies may sense a surface of the skin, whereas other ultrasound frequencies may penetrate through one or more of the epidermal, dermal or subcutaneous layers. The ultrasound fingerprint apparatus may have utility in various applications, including but not limited to mobile electronic devices, such as mobile phones or tablet computers, a laptop computer or biometric access equipment.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: June 7, 2022
    Assignee: BFLY OPERATIONS, INC.
    Inventors: Jianwei Liu, Keith G. Fife, Sarp Satir
  • Publication number: 20220167945
    Abstract: Aspects of the technology described herein relate to techniques for guiding an operator to use an ultrasound device. Thereby, operators with little or no experience operating ultrasound devices may capture medically relevant ultrasound images and/or interpret the contents of the obtained ultrasound images. For example, some of the techniques disclosed herein may be used to identify a particular anatomical view of a subject to image with an ultrasound device, guide an operator of the ultrasound device to capture an ultrasound image of the subject that contains the particular anatomical view, and/or analyze the captured ultrasound image to identify medical information about the subject.
    Type: Application
    Filed: September 7, 2021
    Publication date: June 2, 2022
    Applicant: BFLY Operations, Inc.
    Inventors: Matthew de Jonge, Robert Schneider, David Elgena, Alex Rothberg, Jonathan M. Rothberg, Michal Sofka, Tomer Gafner, Karl Thiele, Abraham Neben
  • Publication number: 20220171041
    Abstract: Methods and apparatus are described for implementing a coding scheme on ultrasound signals received by a plurality of ultrasonic transducers. The coding, and subsequent decoding, may allow for multiple ultrasonic transducers to be operated in a receive mode simultaneously while still differentiating the contribution of the individual ultrasonic transducers. Improved signal characteristics may result, including improved signal-to-noise ratio (SNR).
    Type: Application
    Filed: December 10, 2021
    Publication date: June 2, 2022
    Applicant: BFLY Operations, Inc.
    Inventors: Kailiang Chen, Keith G. Fife, Tyler S. Ralston, Nevada J. Sanchez, Andrew J. Casper
  • Publication number: 20220171040
    Abstract: An ultrasound device, including a profile generator, an encoder configured to receive a profile signal from the profile generator, and an attenuator configured to receive a signal representing an output of an ultrasound sensor and coupled to the encoder to receive a control signal from the encoder, the attenuator including a plurality of attenuator stages, the attenuator configured to produce an output signal that is an attenuated version of the input signal.
    Type: Application
    Filed: December 8, 2021
    Publication date: June 2, 2022
    Applicant: BFLY Operations, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston
  • Patent number: 11324484
    Abstract: An ultrasound circuit comprising a multi-stage trans-impedance amplifier (TIA) is described. The TIA is coupled to an ultrasonic transducer to amplify an electrical signal generated by the ultrasonic transducer in response to receiving an ultrasound signal. The TIA may include multiple stages, at least two of which operate with different supply voltages. The TIA may be followed by further processing circuitry configured to filter, amplify, and digitize the signal produced by the TIA.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: May 10, 2022
    Assignee: BFLY OPERATIONS, INC.
    Inventors: Amandeep Singh, Kailiang Chen, Tyler S. Ralston
  • Publication number: 20220133274
    Abstract: To implement a single-chip ultrasonic imaging solution, on-chip signal processing may be employed in the receive signal path to reduce data bandwidth and a high-speed serial data module may be used to move data for all received channels off-chip as digital data stream. The digitization of received signals on-chip allows advanced digital signal processing to be performed on-chip, and thus permits the full integration of an entire ultrasonic imaging system on a single semiconductor substrate. Various novel waveform generation techniques, transducer configuration and biasing methodologies, etc., are likewise disclosed. HIFU methods may additionally or alternatively be employed as a component of the “ultrasound-on-a-chip” solution disclosed herein.
    Type: Application
    Filed: January 18, 2022
    Publication date: May 5, 2022
    Applicant: BFLY Operations, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 11311274
    Abstract: A system comprising a multi-modal ultrasound probe configured to operate in a plurality of operating modes associated with a respective plurality of configuration profiles; and a computing device coupled to the handheld multi-modal ultrasound probe and configured to, in response to receiving input indicating an operating mode selected by a user, cause the multi-modal ultrasound probe to operate in the selected operating mode.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: April 26, 2022
    Assignee: BFLY Operations, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife, David Elgena
  • Publication number: 20220110529
    Abstract: Described herein are arrays of piezoelectric ultrasound elements. The piezoelectric ultrasound elements may be arranged in a checkerboard pattern. The piezoelectric ultrasound elements in one column may be shifted along the vertical dimension of the array with respect to piezoelectric ultrasound elements in an adjacent column. A piezoelectric ultrasound element in one column may be coupled to a different circuit than all other piezoelectric ultrasound elements in the column. The circuit may be, for example, an analog-to-digital converter or a circuit configured to transmit ultrasound signals from the array. Each piezoelectric ultrasound element in a column may be configured so that it can operate at a different frequency from each of the other piezoelectric ultrasound elements in the column. There array may include at least 1,000 piezoelectric ultrasound elements. The array may be monolithically integrated with a substrate comprising different circuits for each piezoelectric ultrasound element in the array.
    Type: Application
    Filed: December 17, 2021
    Publication date: April 14, 2022
    Applicant: BFLY Operations, Inc.
    Inventors: Jonathan M. Rothberg, Nevada J. Sanchez, Gregory L. Charvat, Tyler S. Ralston
  • Publication number: 20220104793
    Abstract: Aspects of the technology described herein related to controlling, using control circuitry, modulation circuitry to modulate and delay first ultrasound data generated by first ultrasound transducers positioned at a first azimuthal position of an ultrasound transducer array of an ultrasound device and second ultrasound data generated by second ultrasound transducers positioned at a second azimuthal position of the ultrasound transducer array of the ultrasound device, such that the first ultrasound data is delayed by a first delay amount and the second ultrasound data is delayed by a second delay amount that is different from the first delay amount. The first and second ultrasound data received from the modulation circuitry may be filtered and summed. The ultrasound transducer array, the control circuitry, the modulation circuitry, the filtering circuitry, and the summing circuitry may be integrated onto a semiconductor chip or one or more semiconductor chips packaged together.
    Type: Application
    Filed: October 4, 2021
    Publication date: April 7, 2022
    Applicant: BFLY Operations, Inc.
    Inventors: Nevada J. Sanchez, Liewei Bao, Tyler S. Ralston
  • Patent number: 11294044
    Abstract: Circuitry for ultrasound devices is described. A multilevel pulser is described, which can provide bipolar pulses of multiple levels. The multilevel pulser includes a pulsing circuit and pulser and feedback circuit. Symmetric switches are also described. The symmetric switches can be positioned as inputs to ultrasound receiving circuitry to block signals from the receiving circuitry.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: April 5, 2022
    Assignee: BFLY Operations, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston, Keith G. Fife
  • Publication number: 20220099815
    Abstract: Apparatus and methods are provided directed to a device, including at least one ultrasonic transducer, a multi-level pulser coupled to the at least one ultrasonic transducer; the multi-level pulser including a plurality of input terminals configured to receive respective input voltages, an output terminal configured to provide an output voltage, and a signal path between a first input terminal and the output terminal including a first transistor having a first conductivity type coupled to a first diode and, in parallel, a second transistor having a second conductivity type coupled to a second diode.
    Type: Application
    Filed: October 1, 2021
    Publication date: March 31, 2022
    Applicant: BFLY Operations, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston
  • Publication number: 20220079565
    Abstract: Circuitry for ultrasound devices is described. A multi-level pulser is described, which can support time-domain and spatial apodization. The multi-level pulser may be controlled through a software-defined waveform generator. In response to the execution of a computer code, the waveform generator may access master segments from a memory, and generate a stream of packets directed to pulsing circuits. The stream of packets may be serialized. A plurality of decoding circuits may modulate the streams of packets to obtain spatial apodization.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 17, 2022
    Applicant: BFLY Operations, Inc.
    Inventors: Liewei Bao, Kailiang Chen, Tyler S. Ralston, Nevada J. Sanchez
  • Patent number: 11275161
    Abstract: Methods and apparatus are described for implementing a coding scheme on ultrasound signals received by a plurality of ultrasonic transducers. The coding, and subsequent decoding, may allow for multiple ultrasonic transducers to be operated in a receive mode simultaneously while still differentiating the contribution of the individual ultrasonic transducers. Improved signal characteristics may result, including improved signal-to-noise ratio (SNR).
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: March 15, 2022
    Assignee: BFLY Operations, Inc.
    Inventors: Kailiang Chen, Keith G. Fife, Tyler S. Ralston, Nevada J. Sanchez, Andrew J. Casper
  • Patent number: 11272903
    Abstract: A system comprising a multi-modal ultrasound probe configured to operate in a plurality of operating modes associated with a respective plurality of configuration profiles; and a computing device coupled to the handheld multi-modal ultrasound probe and configured to, in response to receiving input indicating an operating mode selected by a user, cause the multi-modal ultrasound probe to operate in the selected operating mode.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: March 15, 2022
    Assignee: BFLY Operations, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife, David Elgena
  • Publication number: 20220057497
    Abstract: Programmable ultrasound probes and methods of operation are described. The ultrasound probe may include memory storing parameter data and may also include a parameter loader which loads the parameter data into programmable circuitry of the ultrasound probe. In some instances, the ultrasound probe may include circuitry grouped into modules which may be repeatable and which may be coupled together to allow data to be exchanged between the modules.
    Type: Application
    Filed: August 30, 2021
    Publication date: February 24, 2022
    Applicant: BFLY Operations, Inc
    Inventors: Tyler S. Ralston, Andrew J. Casper, Nevada J. Sanchez
  • Patent number: 11215703
    Abstract: An ultrasound device, including a profile generator, an encoder configured to receive a profile signal from the profile generator, and an attenuator configured to receive a signal representing an output of an ultrasound sensor and coupled to the encoder to receive a control signal from the encoder, the attenuator including a plurality of attenuator stages, the attenuator configured to produce an output signal that is an attenuated version of the input signal.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: January 4, 2022
    Assignee: BFLY Operations, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston
  • Patent number: D946764
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: March 22, 2022
    Assignee: BFLY Operations, Inc.
    Inventors: Adam Mekeel Mack, Ryan Silvestri, Timothy A. Hyde, Neil Ferrier, Kevin Coss, David Elgena, Matthew de Jonge, Jason Fischman
  • Patent number: D949197
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: April 19, 2022
    Assignee: BFLY Operations, Inc.
    Inventors: David Elgena, Matthew de Jonge, Cristina Shin, Nathan Silberman, Audrey Howell