Patents Assigned to Bio-Rad Laboratories, Inc.
  • Patent number: 11553116
    Abstract: An electronic component assembly having thermal pads with thermal vias coupling an image sensor and a camera board fab is provided for heat dissipation. The electronic component assembly can include: a circuit board having at least one thermal pad disposed on a top surface of the circuit board; and an image sensor disposed on the top surface of the circuit board, having at least one conductive pad disposed at at least one corner of the image sensor. The at least one thermal pad is coupled to the at least one conductive pad of the image sensor and the at least one thermal pad is formed with a plurality of first thermal vias penetrating the thermal pad and the circuit board for transfer of heat of the image sensor.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: January 10, 2023
    Assignee: BIO-RAD LABORATORIES, INC.
    Inventors: Stephen Swihart, Li Lu, Wade Jameson, Evan Thrush, Michael Griffin, Evelio Perez
  • Patent number: 11547995
    Abstract: The invention(s) cover systems and methods for target detection in a multiplexed and rapid manner. Embodiments of the system can include: a base substrate; and an array of sample processing regions defined at a broad surface of the base substrate, wherein each of the array of sample processing regions includes: a set of microwell subarrays arranged in a gradient by volumetric capacity between an upstream end and a downstream end of each respective sample processing region, and a boundary separating each respective sample processing region from adjacent sample processing regions. The system can support methods, with example implementation by an automated platform, for returning preliminary results from a subset of microwells of the samples processing regions, as well as results pertaining to specific and non-specific amplification, for multiple targets of a sample.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: January 10, 2023
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kalyan Handique, Ronald Lebofsky
  • Patent number: 11549731
    Abstract: A heat pump that includes a thermoelectric device(s) and a heat sink having a raised portion with a top surface for thermally coupling with a planar face of the thermoelectric device(s). The raised portion of the heat sink includes an outer periphery and a raised central region surrounded by a void region to provide more uniform thermal conductivity when clamped within an assembly. The raised central region is shaped in an any shape corresponding to a shape of uneven thermal conductivity due to clamping pressure applied to the heat sink. The void region can be substantially contiguous and entirely circumscribe the central raised region. The device can optionally include discrete supports formed of a less thermally-conductive material within the void region. The supports can be elastomeric, such as O-rings, and disposed within pockets defined within the void region.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: January 10, 2023
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Amir Sadri, Nenad Kircanski, Thanh-Vi Tran, Carl Marlowe, Brian David Wilson
  • Patent number: 11542541
    Abstract: Methods, systems, and devices for sampling/isolating material from cells. An exemplary system may comprise a chip including an electrode array of sampling electrodes arranged along a surface of the chip. A cell-receiving area may be located adjacent the surface of the chip. The system also may comprise a tag array of tags supported by the chip and aligned with the electrode array. Each tag of the tag array may include an identifier that is unique to the tag within the tag array. Each tag may be configured to bind nucleic acids, or a capturing agent distinct from the tag may be aligned with each sampling electrode of the electrode array to capture a protein or other analyte of interest. The system further may comprise a control circuit configured to apply an individually controllable voltage to each sampling electrode of the electrode array and measure an electrical property of the sampling electrode.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: January 3, 2023
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Arkadiusz Bibillo, Pranav Patel, Christopher Reggiardo, Jonathan Petersen
  • Patent number: 11534727
    Abstract: The present invention generally relates to droplet libraries and to systems and methods for the formation of libraries of droplets. The present invention also relates to methods utilizing these droplet libraries in various biological, chemical, or diagnostic assays.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: December 27, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Darren Link, John Brian Hutchison, Michael Samuels, Michael Weiner
  • Patent number: 11525813
    Abstract: A container assembly for use with a high-pressure liquid chromatography (HPLC) instrument is disclosed, in which the container assembly, when coupled to a source of pressurized gas, provides fluid medium to the HPLC instrument at positive pressure. The container assembly has an external exterior container shell, an internal fluid container for holding fluid medium, an interstitial volume between the external exterior container shell and the internal fluid container, a port for fluidly connecting the volume to a pressurized gas source, and a port for fluidly connecting the internal fluid container to the HPLC instrument. As a pressurized gas in the interstitial volume increases, fluid medium flows out of the port connected to the internal fluid bag and container assembly at a positive pressure. A system incorporating the container assembly, and method of use of the same, are also disclosed.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: December 13, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Nathan Wrench, William Mainwaring-Burton, Chris Butcher, Nick Harrison
  • Patent number: 11511242
    Abstract: The present invention generally relates to droplet libraries and to systems and methods for the formation of libraries of droplets. The present invention also relates to methods utilizing these droplet libraries in various biological, chemical, or diagnostic assays.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: November 29, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Darren Roy Link, John Brian Hutchison, Michael L. Samuels, Michael Weiner
  • Patent number: 11504714
    Abstract: A system and method for isolating and analyzing single cells, wherein the system includes: an array of wells defined at a substrate, each well including an open surface and a well cavity configured to capture cells in one of a single-cell format and single-cluster format, and a fluid delivery module including a fluid reservoir superior to the array of wells through which fluid flow is controlled along a fluid path in a direction parallel to the broad face of the substrate; and wherein the method includes: capturing a population of non-cell particles into the array of wells in single-particle format; releasing, from the non-cell particles, a set of probes into the array of wells; capturing a population of cells into the array of wells in single-cell format; releasing biomolecules from each captured cell into the array of wells; and generating a set of genetic complexes comprising the biomolecules associated with a single captured cell and a subset of probes within individual wells of the array of wells.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: November 22, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kalyan Handique, Vishal Sharma, Priyadarshini Gogoi, William Chow, Austin Payne, Kyle Gleason, Brian Boniface, John Connolly, Sam Tuck
  • Patent number: 11504719
    Abstract: A system and method for receiving and delivering a fluid, the system comprising: a body configured to interface with an opening of a reservoir and defining: a protrusion defining a set position of the body relative to the reservoir; a wall extending from the protrusion; a receiving surface coupled to the wall and sloping from an apex to a nadir along a first direction, the receiving surface comprising a vent; and an outlet positioned closer to the nadir than the apex of the receiving surface and displaced from the vent, the outlet comprising an extension from the body, the extension configured to contact an interior wall of the reservoir, wherein the body comprises: a bubble-mitigating operation mode in which the receiving surface receives and transmits the fluid along the receiving surface, and a fluid-transmitting operation mode in which the body directs the fluid along the interior wall of the reservoir.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: November 22, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kalyan Handique, Austin Payne
  • Publication number: 20220362764
    Abstract: The present disclosure provides methods and compositions for detecting polynucleotides in a sample and for quantifying polynucleotide load in a sample. The polynucleotides can be associated with a disease, disorder, or condition. In some applications, methylated DNA is quantified, e.g., in order to determine the load of polynucleotides in a sample. The present disclosure also provides methods and compositions for determining the load of fetal polynucleotides in a biological sample, e.g., the load of fetal polynucleotides (e.g., DNA, RNA) in maternal plasma. The present disclosure provides methods and compositions for detecting cellular processes such as cellular viability, growth rates, and infection rates. This disclosure also provides compositions and methods for detecting differences in copy number of a target polynucleotide. In some embodiments, the methods and compositions provided herein are useful for diagnosis of fetal genetic abnormalities, when the starting sample is maternal tissue (e.g.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 17, 2022
    Applicant: Bio-Rad Laboratories, Inc.
    Inventors: Benjamin J. HINDSON, Serge SAXONOV, Phillip BELGRADER, Kevin D. NESS, Michael Y. LUCERO, Billy W. COLSTON, JR., Shawn Paul HODGES, Nicholas J. HEREDIA, Jeffrey Clark MELLEN, Camille Bodley TROUP, Paul WYATT
  • Patent number: 11499181
    Abstract: Method of haplotype analysis. In an exemplary method, an aqueous phase containing nucleic acid may be partitioned into a plurality of discrete volumes. At least one allele sequence may be amplified in the volumes from each of a first polymorphic locus and a second polymorphic locus that exhibit sequence variation in the nucleic acid. At least one measure of co-amplification of allele sequences from both loci in the same volumes may be determined. A haplotype of the first and second loci may be selected based on the at least one measure of co-amplification.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: November 15, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: John F. Regan, Serge Saxonov, Michael Y. Lucero, Benjamin J. Hindson, Phillip Belgrader, Simant Dube, Austin P. So, Jeffrey C. Mellen, Nicholas J. Heredia, Kevin D. Ness, Billy W. Colston, Jr.
  • Patent number: 11499183
    Abstract: Systems and methods for detection of a signal from droplets of an emulsion. An exemplary system may comprise a fluid transporter having a tube with an open end for aspirating droplets, a singulator to arrange the droplets in single file and to space the single-file droplets from one another, and a detection channel in optical communication with a detector configured to detect a signal from droplets. In some embodiments, the singulator may have a channel junction at which a stream of droplets in single file is combined with a stream of spacing fluid, and a tapered spacing channel extending downstream from the channel junction toward the detection channel. In some embodiments, the fluid transporter may suck droplet-containing fluid and spacing fluid through the detection channel from respective sources. In some embodiments, droplets may be subjected to a disaggregation routine before they are passed through the detection channel.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: November 15, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: David P. Stumbo, George Carman, Steve Hobbs, Anthony J. Makarewicz, Jr., Dmitri Simonian, David Glade, Joshua Oen, Denis Pristinski, John Dzenitis
  • Publication number: 20220355292
    Abstract: This invention provides compositions and methods for detecting differences in copy number of a target polynucleotide. In some cases, the methods and compositions provided herein are useful for diagnosis of fetal genetic abnormalities, when the starting sample is maternal tissue (e.g., blood, plasma). The methods and materials described apply techniques for allowing detection of small, but statistically significant, differences in polynucleotide copy number.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 10, 2022
    Applicant: Bio-Rad Laboratories, Inc.
    Inventors: Benjamin J. HINDSON, Serge SAXONOV, Phillip BELGRADER, Kevin D. NESS, Michael Y. LUCERO, Billy W. COLSTON, JR.
  • Patent number: 11480565
    Abstract: An instrument for detecting signal from a biological sample includes a pipettor module configured to hold a plurality of pipettes in respective pipette positions, to hold liquid in one or more pipette tips, and to pipette liquid in and out of the one or more pipette tips. Each of the one or more pipette tips has a pipette tip point. The instrument further includes one or more magnets positioned such that each of the one or more pipette tips is adjacent one of the one or more magnets.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: October 25, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Shai Nimri, Yochanan Uri, Boaz Ran
  • Patent number: 11479816
    Abstract: Comparison of common sequencing reads from sequencing based on partition-based barcoding can be used to improve sequencing results. Increased loading of barcodes per partition can also improve sequencing results.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: October 25, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Ronald Lebofsky, Andrew Kohlway, Jennifer Chew, Zachary Burkett, Man Cheng
  • Patent number: 11471882
    Abstract: Lateral flow devices, methods and kits for performing lateral flow assays are provided.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: October 18, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: William Strong, Clayton T. McKee
  • Patent number: 11458467
    Abstract: A microfluidic probe head is provided. The microfluidic probe head comprises a processing surface. The processing surface has a first and second aperture and a fluid injection channel, which leads to the first aperture. The microfluidic probe head comprises also a first fluid aspiration channel which leads to the second aperture. Thereby, the second aperture forms a slot in the processing surface. Furthermore, a microfluidic probe may be provided comprising the microfluidic probe head.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: October 4, 2022
    Assignee: Bio-Rad Laboratories Inc.
    Inventors: Robert Dean Lovchik, Anna Fomitcheva Khartchenko, Govind Kaigala, Iago Pereiro Pereiro
  • Patent number: 11435285
    Abstract: Systems for protein quantitation using a Fabry-Perot interferometer. In one arrangement, a quantitation device includes an infrared source, a sample holder, and a Fabry-Perot interferometer positioned to receive infrared radiation from the source passing through a sample on the sample holder. A band pass optical filter sets the working range of the interferometer, and radiation exiting the interferometer falls on a detector that produces a signal indicating the intensity of the received radiation. A controller causes the interferometer to be tuned to a number of different resonance wavelengths and receives the intensity signals, for determination of an absorbance spectrum.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: September 6, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Evan Thrush, Steven Swihart, William Strong, Trey Marlowe, Li Lu
  • Patent number: 11391911
    Abstract: Disclosed is an adjustable mirror mount that is capable of adjusting a mirror in two axes with a high degree of precision and low cross-coupling. Long horizontal and vertical adjustment arms are used to allow the precision adjustment about both a horizontal axis and a vertical axis.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: July 19, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventor: Rodney C. Harris
  • Patent number: 11390917
    Abstract: The invention generally relates to droplet based digital PCR and methods for analyzing a target nucleic acid using the same. In certain embodiments, a method for determining the nucleic acid make-up of a sample is provided.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: July 19, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: John Brian Hutchison, Jeffrey Charles Olson, Darren Roy Link