Abstract: A LIDAR apparatus can include a polygon deflector that includes a plurality of facets. The LIDAR apparatus can include a motor rotatably coupled to the polygon deflector. The motor is configured to rotate the polygon deflector about a first axis orthogonal to a first plane. The LIDAR apparatus can include an optic positioned within an interior of the polygon deflector. The optic collimates a first beam to be incident on a particular facet of the plurality of facet. The particular facet of the plurality of facets refracts the first beam in the first plane between a first angle and a second angle as the polygon deflector rotates about the first axis to output a second beam.
Type:
Application
Filed:
May 29, 2020
Publication date:
September 17, 2020
Applicant:
Blackmore Sensors & Analytics, LLC
Inventors:
Edward Joseph Angus, Ryan Moore Galloway
Abstract: A system and method for scanning of coherent LIDAR. The system includes a motor, a laser source configured to generate an optical beam, and a deflector. A first facet of the plurality of facets has a facet normal direction. The deflector is coupled to the motor and is configured to rotate about a rotation axis to deflect the optical beam from the laser source. The laser source is configured to direct the optical beam such that the optical beam is incident on the deflector at a first incident angle in a first plane, wherein the first plane includes the rotation axis, wherein the first incident angle is spaced apart from the facet normal direction for the first facet. A second facet of the plurality of facets includes an optical element configured to deflect the optical beam at the first incident angle into a deflected angle.
Type:
Application
Filed:
May 29, 2020
Publication date:
September 17, 2020
Applicant:
Blackmore Sensors & Analytics, LLC
Inventors:
Ryan Moore Galloway, Edward Angus, Zeb William Barber
Abstract: A system and method for optical detection in autonomous vehicles includes modulating an optical signal from a laser to generate a modulated optical signal and transmitting the modulated optical signal toward an object. The system and method include receiving, responsive to transmitting the modulated optical signal, a returned optical signal and mixing the returned optical signal with a reference optical signal associated with the optical signal from the laser to generate a mixed optical signal and detecting the mixed optical signal to generate an electrical signal. Based on the electrical signal and the modulated optical signal, a parameter of an internal reflection of the returned optical signal from one or more optical components is determined, which may be used to operate a vehicle.
Type:
Grant
Filed:
November 12, 2019
Date of Patent:
September 8, 2020
Assignee:
BLACKMORE SENSORS & ANALYTICS, LLC
Inventors:
Stephen C. Crouch, Emil Kadlec, Krishna Rupavatharam
Abstract: A system and method for scanning of coherent LIDAR. The system includes a motor, a laser source configured to generate an optical beam, and a deflector. A first facet of the plurality of facets has a facet normal direction. The deflector is coupled to the motor and is configured to rotate about a rotation axis to deflect the optical beam from the laser source. The laser source is configured to direct the optical beam such that the optical beam is incident on the deflector at a first incident angle in a first plane, wherein the first plane includes the rotation axis, wherein the first incident angle is spaced apart from the facet normal direction for the first facet. A second facet of the plurality of facets includes an optical element configured to deflect the optical beam at the first incident angle into a deflected angle.
Type:
Grant
Filed:
December 30, 2019
Date of Patent:
August 25, 2020
Assignee:
BLACKMORE SENSORS & ANALYTICS, LLC
Inventors:
Ryan Moore Galloway, Edward Angus, Zeb William Barber
Abstract: An apparatus is provided for using a square wave digital chirp signal for optical chirp range detection. A laser source emits an optical signal and a RF waveform generator generates an input digital chirp signal based on the square wave digital chirp signal. A frequency of the optical signal is modulated based on the input digital chirp signal. A splitter divides the optical signal into a transmit optical signal and a reference optical signal. A detector combines the reference optical signal and a return optical signal from an object. The detector generates an electrical output signal based on the combined reference optical signal and the return optical signal. A processor determines a range to the object based on a characteristic of a Fourier transform the electrical output signal. A method is also provided for using the square wave digital chirp signal for optical chirp range detection.
Type:
Application
Filed:
April 28, 2020
Publication date:
August 13, 2020
Applicant:
Blackmore Sensors & Analytics, LLC
Inventors:
Stephen C. Crouch, James Curry, Trenton Berg, Richard Funk, Kyle Oliver, Daniel Ferguson
Abstract: A LIDAR apparatus can include a polygon deflector that includes a plurality of facets. The LIDAR apparatus can include a motor rotatably coupled to the polygon deflector. The motor is configured to rotate the polygon deflector about a first axis orthogonal to a first plane. The LIDAR apparatus can include an optic positioned within an interior of the polygon deflector. The optic collimates a first beam to be incident on a particular facet of the plurality of facet. The particular facet of the plurality of facets refracts the first beam in the first plane between a first angle and a second angle as the polygon deflector rotates about the first axis to output a second beam.
Type:
Grant
Filed:
December 23, 2019
Date of Patent:
July 14, 2020
Assignee:
BLACKMORE SENSORS & ANALYTICS, LLC
Inventors:
Edward Joseph Angus, Ryan Moore Galloway
Abstract: An apparatus is provided for using a square wave digital chirp signal for optical chirp range detection. A laser source emits an optical signal and a RF waveform generator generates an input digital chirp signal based on the square wave digital chirp signal. A frequency of the optical signal is modulated based on the input digital chirp signal. A splitter divides the optical signal into a transmit optical signal and a reference optical signal. A detector combines the reference optical signal and a return optical signal from an object. The detector generates an electrical output signal based on the combined reference optical signal and the return optical signal. A processor determines a range to the object based on a characteristic of a Fourier transform the electrical output signal. A method is also provided for using the square wave digital chirp signal for optical chirp range detection.
Type:
Grant
Filed:
December 18, 2019
Date of Patent:
June 2, 2020
Assignee:
BLACKMORE SENSORS & ANALYTICS, LLC
Inventors:
Stephen C. Crouch, James Curry, Trenton Berg, Richard Funk, Kyle Oliver, Daniel Ferguson
Abstract: An apparatus is provided for using a square wave digital chirp signal for optical chirp range detection. A laser source emits an optical signal and a RF waveform generator generates an input digital chirp signal based on the square wave digital chirp signal. A frequency of the optical signal is modulated based on the input digital chirp signal. A splitter divides the optical signal into a transmit optical signal and a reference optical signal. A detector combines the reference optical signal and a return optical signal from an object. The detector generates an electrical output signal based on the combined reference optical signal and the return optical signal. A processor determines a range to the object based on a characteristic of a Fourier transform the electrical output signal. A method is also provided for using the square wave digital chirp signal for optical chirp range detection.
Type:
Grant
Filed:
July 27, 2017
Date of Patent:
January 14, 2020
Assignee:
BLACKMORE SENSORS & ANALYTICS, LLC
Inventors:
Stephen C. Crouch, James Curry, Trenton Berg, Richard Funk, Kyle Oliver, Daniel Ferguson
Abstract: Laser 3D imaging techniques include splitting a laser temporally-modulated waveform of bandwidth B and duration D from a laser source into a reference beam and a target beam and directing the target beam onto a target. First data is collected, which indicates amplitude and phase of light relative to the reference beam received at each of a plurality of different times during a duration D at each optical detector of an array of one or more optical detectors perpendicular to the target beam. Steps are repeated for multiple sampling conditions, and the first data for the multiple sampling conditions are synthesized to form one or more synthesized sets. A 3D Fourier transform of each synthesized set forms a digital model of the target for each synthesized set with a down-range resolution based on the bandwidth B.
Type:
Grant
Filed:
July 3, 2018
Date of Patent:
January 7, 2020
Assignees:
BLACKMORE SENSORS AND ANALYTICS, LLC, MONTANA STATE UNIVERSITY
Inventors:
Stephen C. Crouch, Brant M. Kaylor, Zeb W. Barber, Randy R. Reibel