Patents Assigned to Board of Trustees, The Leland Stanford Junior University
  • Publication number: 20240131196
    Abstract: Embodiments herein describe systems and methods to enhance RNA stability and uses thereof. Many embodiments alter the sequence of an RNA therapeutic molecule (e.g., vaccines) to encode for a variant peptide while maintaining and/or increasing stability of the RNA therapeutic.
    Type: Application
    Filed: June 30, 2021
    Publication date: April 25, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Rhiju Das, Hannah K. Wayment-Steele
  • Patent number: 11968263
    Abstract: A method and a system for managing power resources. One or more measurements received from one or more sensors communicatively coupled to at least one processor are processed. The sensors monitor and measure at least one of: one or more operational parameters associated with operation of at least one equipment, one or more external parameters associated with an environment of the equipment, and one or more power parameters associated with a power consumption by the equipment. Based on the processed one or more measurements, one or more future operational parameters associated with an operation of the are determined. The operation of the equipment is controlled using the determined future operational parameters.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: April 23, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ram Rajagopal, Gustavo Vianna Cezar, Thomas Navidi, Elizabeth Buechler, Abbas El Gamal
  • Patent number: 11965034
    Abstract: Compositions and methods are provided for treating fibrosis in a mammal by administering a therapeutic dose of a pharmaceutical composition.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: April 23, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Gerlinde Wernig, Irving L. Weissman
  • Patent number: 11965780
    Abstract: Improved resolution of a time-varying optical measurement is provided with optical intensity modulator(s) having a bandwidth greater than that of the detector array(s). The modulator configuration can have high photon collection efficiency, e.g. by using polarization modulation to split the incident light into several time-gated channels.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: April 23, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Adam Bowman, Mark A. Kasevich, Brannon Klopfer
  • Patent number: 11965215
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: April 23, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Patent number: 11963998
    Abstract: Compositions and methods are provided for the generation or treatment of chronic tympanic membrane perforation by modulation of HB-EGF activity.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: April 23, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Peter Luke Santa Maria, Yunzhi Yang, Sungwoo Kim, Chloe Domville-Lewis
  • Publication number: 20240124895
    Abstract: In certain aspects, the present invention provides methods for inducing a stable gene modification of a target nucleic acid via homologous recombination in a primary cell, such as a primary blood cell and/or a primary mesenchymal cell. In certain other aspects, the present invention provides methods for enriching a population of genetically modified primary cells having targeted integration at a target nucleic acid. The methods of the present invention rely on the introduction of a DNA nuclease such as a Cas polypeptide and a homologous donor adeno-associated viral (AAV) vector into the primary cell to mediate targeted integration of the target nucleic acid. Also provided herein are methods for preventing or treating a disease in a subject in need thereof by administering to the subject any of the genetically modified primary cells or pharmaceutical compositions described herein to prevent the disease or ameliorate one or more symptoms of the disease.
    Type: Application
    Filed: December 5, 2022
    Publication date: April 18, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Daniel P. Dever, Rasmus O. Bak, Ayal Hendel, Waracharee Srifa, Matthew H. Porteus
  • Publication number: 20240124520
    Abstract: N-Acylated histidine dipeptides of formula are disclosed. The compounds are useful for treating breast cancer.
    Type: Application
    Filed: October 10, 2020
    Publication date: April 18, 2024
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Michael BRUNO, Jijuan GU URBAN, Jennifer LI-POOK-THAN, Teri SLIFER, Michael SNYDER
  • Patent number: 11957787
    Abstract: Disclosed herein are methods, processes, compositions, and kits for generating bone graft materials for use at a site of bone defect that utilizes a composition which contains liposomal Wnt polypeptide, such as liposomal Wnt3a polypeptide, liposomal Wnt5a polypeptide, or liposomal Wnt10b polypeptide. Also disclosed herein are methods, processes, compositions, and kits for enhancing mammalian bone marrow cells that utilizes a composition which contains liposomal Wnt polypeptide, such as liposomal Wnt3a polypeptide, liposomal Wnt5a polypeptide, or liposomal Wnt10b polypeptide.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: April 16, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jill Helms, Girija Dhamdhere
  • Patent number: 11961837
    Abstract: In certain examples, methods and semiconductor structures are directed to an integrated circuit (IC) having a diamond layer section and a GaN-based substrate being monolithically integrated or bonded as part of the same IC. In a specific example, the GaN-based substrate includes GaN, AlxGayN (0<x<1; x+y=1) and a dielectric layer, and a diamond layer section which may include polycrystalline diamond. The IC includes: a GaN-based field effect transistor (FET) integrated with a portion of the GaN-based substrate, and a diamond-based FET integrated with a portion of the diamond layer section, the diamond FET being electrically coupled to the GaN-based FET and situated over or against a surface region of the GaN-based substrate.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: April 16, 2024
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The Regents of the University of California
    Inventors: Srabanti Chowdhury, Mohamadali Malakoutian, Matthew A. Laurent, Chenhao Ren, Siwei Li
  • Publication number: 20240120023
    Abstract: Methods for identifying biosynthetic gene clusters that include genes for producing compounds that interact with specific target proteins are disclosed. Some methods relate to bioinformatics methods for identifying and/or prioritizing biosynthetic gene clusters. Related systems, components, and tools for the identification and expression of such gene clusters are also disclosed.
    Type: Application
    Filed: July 7, 2023
    Publication date: April 11, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Brian Thomas Naughton, Colin Harvey, Ulrich Schlecht, Maureen Elizabeth Hillenmeyer, Joe Horecka
  • Publication number: 20240115583
    Abstract: Provided herein are compositions for preventing or treating muscle conditions such as muscle damage, injury, or atrophy. In some embodiments, the compositions comprise a prostaglandin E2 (PGE2) compound and a myotoxin. In some embodiments, the muscle damage, injury, or atrophy is the result of a nerve injury, a surgical procedure, or a traumatic injury. Methods of promoting muscle regeneration and methods of increasing muscle mass are also provided herein.
    Type: Application
    Filed: May 15, 2023
    Publication date: April 11, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Helen M. Blau, Adelaida R. Palla, Andrew Tri Van Ho
  • Patent number: 11951619
    Abstract: Cable-actuated differential enabling N degrees of freedom provided by a plurality of pulleys and at least N+1 tensioning cables. The cable-actuated differential increases a dynamic force range by minimizing co-activation of the tensioning cables at any operating point. A cable-actuated differential having three cables provides motor based control of a 2 DOF joint that can be applied to robots or teleoperation. A cable-actuated mechanical differential having opposing bevel gears and a middle bevel gear meshed with the opposing gear allows an output connector to controllably and independently rotate about the x axis or y axis via three operational modes without backlash.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: April 9, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: J. Kenneth Salisbury, Jr., Alex Nathan Kahn
  • Patent number: 11951630
    Abstract: Systems and methods of the present disclosure provide a control solution for a robotic actuator. The actuator can have one or two degrees of freedom of control, and can connect with a platform using an arm. The arm can have at least two degrees of freedom of control, and the platform can have at least two degrees of freedom of control. The platform can be subjected to unpredictable forces requiring a control response. The control solution can be generated using operational space control, using the degrees of freedom of the arm, platform and actuator.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 9, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Oussama Khatib
  • Patent number: 11951187
    Abstract: The disclosure provides NIR-II imaging probes and methods of using the NIR-II imaging probes for dynamic in vivo tracking of cells, such as stem cells, or other substances. NIR-II imaging probes can include a biocompatible NIR-II dye molecule coupled to an organic, biocompatible protein carrier complex, including a carrier protein coupled to a cell-penetrating peptide.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: April 9, 2024
    Assignee: The Board of Trustees of Leland Stanford Junior University
    Inventors: Zhen Cheng, Hao Chen
  • Patent number: 11952588
    Abstract: The disclosure provides methods for improved hematopoietic stem cell transplantations, including methods to enhance protection from graft versus host disease while maintaining effective immune responses such as graft versus tumor immune responses. The disclosure provides methods for administering, for example, hematopoietic stem and progenitor cells, regulatory T cells, and conventional T cells, wherein the conventional T cells are administered after the hematopoietic stem and progenitor cells and regulatory T cells. The disclosure also provides methods for administering, for example, hematopoietic stem and progenitor cells, regulatory T cells, and conventional T cells, wherein the regulatory T cells have not been cryopreserved prior to administration.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: April 9, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Everett H. Meyer, Robert S. Negrin
  • Patent number: 11953441
    Abstract: The disclosure provides an optical probe comprising an optical waveguide attached to a molecular switch that produces an altered optical signal upon binding a target molecule. The disclosure also provides an optical sensor system comprising an optical probe, a light source configured to emit the excitation light to be coupled into the optical waveguide of the optical probe; and a detector.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: April 9, 2024
    Assignees: CZ Biohub SF, LLC, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Amani Hariri, Constantin Dory, Alyssa Cartwright, Jelena Vuckovic, Hyongsok Tom Soh
  • Patent number: 11951149
    Abstract: Provided herein are methods for treating, reducing and/or ameliorating symptoms of autism spectrum disorder (ASD) in a subject, where at least one measure of social impairment, anxiety, or repetitive behaviors is treated and/or ameliorated. Aspects include intranasally administering arginine vasopressin (AVP), or an analog of vasopressin, to a subject (e.g., a child between 6 and 12 years of age and having endogenous pre-treatment levels between about 0.045 and about 4.028 pg/mL, where the mean was 1.324 pg/mL). In children having high pre-treatment blood levels of AVP (e.g., about 25% or more above the mean pre-treatment AVP blood levels of the treatment group; or having pre-treatment blood vasopressin levels greater than 1.324 pg/mL), the treatment was enhanced. Because no difference in pre-treatment blood AVP levels was observed between control and ASD subjects, it was surprising that AVP treatment was more effective in subjects having high pre-treatment AVP levels.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: April 9, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karen J. Parker, Dean S. Carson, Antonio Y. Hardan
  • Patent number: 11955646
    Abstract: A supported catalyst includes: (1) a catalyst support; and (2) deposits of a catalyst covering the catalyst support, wherein the deposits have an average thickness of about 2 nm or less, and the deposits are spaced apart from one another.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: April 9, 2024
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Volkswagen Aktiengesellschaft
    Inventors: Friedrich B. Prinz, Thomas Jaramillo, Drew C. Higgins, Yongmin Kim, Shicheng Xu, Thomas Schladt, Tanja Graf
  • Patent number: 11952570
    Abstract: Methods are provided for the isolation and analysis of circular DNA from complex samples, based on the topology of the DNA molecule. A sample comprising DNA species is combined with a chaotropic dense salt solution. A fraction containing the circular DNA of interest is isolated and dialyzed to remove excess salt. In some embodiments salt gradients are generated by ultracentrifugation in the absence of intercalating dyes, e.g. ethidium bromide; and in the absence of protease digestion. The circular DNA thus isolated is substantially pure, e.g. greater than about 75%, greater than about 80%, greater than about 90%, greater than about 95% of DNA in the isolated fraction is comprised of circular DNA.
    Type: Grant
    Filed: January 18, 2023
    Date of Patent: April 9, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Massa Shoura, Stephen Levene, David Girata