Patents Assigned to Board of Trustees, The Leland Stanford Junior University
  • Patent number: 11929171
    Abstract: Methods to compute glycemia tests and applications thereof are described. Additional methods to compute risk of atherosclerotic cardiovascular disease and applications thereof are described. Generally, systems utilize analyte measurements to determine a glycemic status or cardiovascular disease risk, which can be used as a basis to treat individuals.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: March 12, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Sophia Miryam Schüssler-Fiorenza Rose, Kevin Contrepois, Wenyu Zhou, Samson Mataraso, Tejaswini Mishra, Michael Snyder, Kegan Moneghetti, Francois Haddad
  • Publication number: 20240077475
    Abstract: Compounds useful as contrast agents in image-guided surgery are provided. The compounds comprise a latent cationic lysosomotropic fragment that is detectable upon cleavage by lysosomal proteases within treated tissues, particularly within tumors and other diseased tissues. Also provided are compositions comprising the compounds and methods for using the compounds, for example in dynamically monitoring protease activity in vivo during image-guided tumor resection surgery.
    Type: Application
    Filed: October 18, 2023
    Publication date: March 7, 2024
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Matthew S. BOGYO, Martijn VERDOES, Leslie OFORI, Nimali P. WITHANA
  • Publication number: 20240076618
    Abstract: Methods of differentiating pluripotent stem cells into thymic epithelial progenitor cells are provided.
    Type: Application
    Filed: January 13, 2022
    Publication date: March 7, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Katja G. WEINACHT, Hui Gai
  • Patent number: 11918370
    Abstract: Many embodiments of the invention include systems and methods for evaluating motion from a video, the method includes identifying a target individual in a set of one or more frames in a video, analyzing the set of frames to determine a set of pose parameters, generating a 3D body mesh based on the pose parameters, identifying joint positions for the target individual in the set of frames based on the generated 3D body mesh, predicting a motion evaluation score based on the identified join positions, providing an output based on the motion evaluation score.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: March 5, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ehsan Adeli-Mosabbeb, Mandy Lu, Kathleen Poston, Juan Carlos Niebles
  • Patent number: 11918550
    Abstract: Methods are provided for the treatment of cancer by administering a mitochondrial uncoupler in a dose effective to increase differentiation of the cancer cells, which may be provided in a combination with a retinoic acid to differentiate the cancer cells. The effect on the targeted cancer cell is enhanced relative to a regimen in which a single agent is used; and the effect may be synergistic relative to a regimen in which a single agent is used. The cancer may be resistant to retinoic acid.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: March 5, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jiangbin Ye, Haowen Jiang, Yang Li
  • Patent number: 11921118
    Abstract: Provided herein are methods for labeling the proteomes of cells, as well as methods for labeling proteins or populations of proteins produced by cells. In some embodiments, the methods comprise introducing variant aminoacyl-tRNA synthetases and noncanonical amino acids into cells. Also provided herein are polynucleotides encoding variant aminoacyl-tRNA synthetases that recognize noncanonical amino acids. The methods and compositions provided herein are useful for, among other things, identifying target cells and identifying biomarkers of interest.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: March 5, 2024
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The United States Government as represented by the Department of Veterans Affairs
    Inventors: Andrew Yang, Anton Wyss-Coray, Kyle Brewer
  • Patent number: 11923873
    Abstract: In certain examples, methods and semiconductor structures are directed to an apparatus including a photon emitter such as an LED which operates over an emission wavelength range and a photo-voltaic device arranged relative to the photon emitter to provide index-matched optical coupling between the photo-voltaic device and the photon emitter for an emission wavelength range of the photon emitter.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: March 5, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Shanhui Fan, Bo Zhao, Sid Assawaworrarit, Parthiban Santhanam, Meir Orenstein
  • Patent number: 11919574
    Abstract: An apparatus includes a substrate, at least one type of tuning material, and a composite material. The substrate has an interface surface or material that manifests, in response to light in a color spectrum, a particular color and a first thermal load. The particular color is associated with the first thermal load. The at least one type of tuning material manifests, in response to light in the color spectrum, the particular color and a second thermal load. The particular color is associated with the second thermal load. The first thermal load is different from the second thermal load. The composite material includes the interface surface or material and the at least one type of tuning material. The composite material manifests, in response to light in the color spectrum, the particular color and a tuned thermal load which is different than the first thermal load and the second thermal load.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: March 5, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Wei Li, Yu Shi, Shanhui Fan, Zhen Chen
  • Publication number: 20240065564
    Abstract: Systems and methods for predicting and treating relapses for neurological conditions in accordance with embodiments of the invention are illustrated. One embodiment includes a method for predicting and treating a clinical neurological condition relapse. The method includes steps for selecting a threshold heart rate variability value for a patient suffering from a clinical neurological condition, monitoring, using a cardiac monitor, the heart rate variability of the patient over time, providing an indicator that a relapse is imminent when the heart rate variability of the patient falls below the threshold heart rate variability value, and treating the patient using a transcranial magnetic stimulation device by applying an accelerated theta burst stimulation protocol where the transcranial magnetic stimulation target is the left prefrontal dorsolateral cortex.
    Type: Application
    Filed: October 26, 2023
    Publication date: February 29, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nolan Williams, Keith Sudheimer
  • Patent number: 11912998
    Abstract: Methods of treating an adult mammal for an aging-associated impairment are provided. Aspects of the methods include modulating CCR3, e.g., by modulating eotaxin-1/CCR3 interaction, in the mammal in a manner sufficient to treat the mammal for the aging-associated impairment. A variety of aging-associated impairments may be treated by practice of the methods, which impairments include cognitive impairments.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: February 27, 2024
    Assignees: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE UNITED STATES GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Anton Wyss-Coray, Thomas A. Rando, Markus Britschgi, Kaspar Rufibach, Saul A. Villeda
  • Patent number: 11909050
    Abstract: An anode includes: (1) a current collector; and (2) an interfacial layer disposed over the current collector. The interfacial layer includes an ion-conductive organic network including anionic coordination units, organic linkers bonded through the anionic coordination units, and counterions dispersed in the ion-conductive organic network.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: February 20, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Zhenan Bao, Zhiao Yu, Dawei Feng, Min Ah Lee, Yi Cui, Allen Pei
  • Patent number: 11905333
    Abstract: The present invention provides a clinically applicable method of stem cell transplantation that facilitates engraftment and reconstitutes immunocompetence of the recipient without requiring radiotherapy or chemotherapy, and without development of GVHD or graft rejection. Aspects of the present invention are based on the discovery that the depletion of the endogenous stem cell niche facilitates efficient engraftment of stem cells into that niche. In particular, the present invention combines the use of selective ablation of endogenous stem cells, in combination with the administration to the recipient of exogenous stem cells, resulting in efficient, long-term engraftment and tolerance.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: February 20, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Irving L. Weissman, Agnieszka Czechowicz, Deepta Bhattacharya, Daniel Kraft
  • Patent number: 11903969
    Abstract: Methods and compositions for modifying allogeneic donor ?? T cells for use in the treatment of high risk leukemias are provided.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: February 20, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Matthew H. Porteus, Alice Bertaina, Volker Andreas Wiebking
  • Patent number: 11903666
    Abstract: A medical device for retrieval of kidney stone fragments from a urinary tract is provided. The medical device has a plurality of magnets arranged within a flexible sheath forming a flexible wire. The magnets are magnetically attached end-to-end and arranged with their magnetic polarities alternating in direction. The magnetization direction of each of the magnets is orthogonal to the length axis of the flexible wire. A removable inner stylet is situated within the flexible sheath allowing for modifiable flexibility of the wire. The medical device is dimensioned to be introduced into the urinary tract and standard endoscopic devices. The medical device is further dimensioned to allow for the wire with magnetically attached stone fragments to be retrieved from the urinary tract. The magnetic field along the length axis is sufficient to attract to the surface of the flexible wire superparamagnetic nanoparticles which have bound themselves to kidney stone fragments.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: February 20, 2024
    Assignees: The Board of Trustees of the Leland Stanford Junior University, U.S. Government as represented by the Department of Veterans Affairs
    Inventors: Tianjia Jessie Ge, Simon Conti, Joseph C. Liao, Kunj Raju Sheth, Shan X. Wang
  • Patent number: 11904589
    Abstract: Square symmetric composite laminate structures, and sub-modules thereof, are provided, along with methods of forming the same. The square symmetric laminate structures include two or more sub-laminate modules, each comprising: a first ply set consisting of a first ply layer oriented at a first angle and a second ply layer oriented at a second angle, a first sum of the first and second angles being ninety degrees; and a second ply set consisting of a third ply layer oriented at a third angle and a fourth ply layer oriented at a fourth angle, a second sum of the third and fourth angles being ninety degrees; wherein the second ply layer is positioned adjacent the third ply layer and the second and third ply layers are both positioned intermediate the first and fourth ply layers, thereby defining a double-double helix arrangement of the respective ply layers. Associated methods are also provided.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: February 20, 2024
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Stephen W. Tsai, Dan Wang, Antonio Miravete
  • Patent number: 11908690
    Abstract: In certain examples, methods and semiconductor structures are directed to multilayered structures including TMD (transition metal dichalcogenide material or TMD-like material and a polymer-based layer which is characterized as exhibiting flexibility. A first layer including a TMD-based material (e.g., an atomic-thick layer including TMD) or TMD-like material is provided or grown on a surface which in certain instances may be a rigid platform or substrate. A plurality of electrodes are provided on or as part of the first layer, and another layer or film including polymer is applied to cover the first layer and the electrodes. The other layer is integrated with the TMD material or TMD-like material and the first layer, and the other layer provides a flexible substrate such as when released from the exemplary rigid platform or substrate.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: February 20, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Alwin S. Daus, Sam Vaziri, Eric Pop
  • Publication number: 20240043835
    Abstract: Systems, methods, and kits for enhancing mRNA translation are disclosed. Some embodiments describe expression constructs for producing a peptide and include a translational enhancer. Additional embodiments describe methods for producing a peptide using a construct including a translational enhancer. Certain embodiments further enhance mRNA stability.
    Type: Application
    Filed: May 11, 2021
    Publication date: February 8, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Maria Barna, Kathrin Leppek
  • Patent number: 11894546
    Abstract: A coated cathode material includes a cathode active material and an interfacial layer coating the cathode active material. The interfacial layer includes a lithium-containing fluoride which includes at least one additional metal different from lithium.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: February 6, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yi Cui, Jin Xie
  • Patent number: 11891634
    Abstract: Disclosed herein are systems, methods, and compositions for rapidly and reversibly destabilizing a target protein in vitro or in vivo, in the presence or absence of a cell-permeable, synthetic molecule or ligand.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: February 6, 2024
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Thomas J. Wandless, Ling-Chun Chen, Yusaku Miyamae
  • Patent number: 11892457
    Abstract: Methods of detecting ZNT8 antibodies in serum are described. The methods include proteoliposomes comprising a transmembrane domain (TMD) and a cytosolic domain (CTD) of ZnT8 proteins exposed on the exterior of the proteoliposome; serum comprising antibodies targeting the ZnT8 proteins; and labelled captured autoantibodies that bind to ZnT8 antibodies.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: February 6, 2024
    Assignees: The Johns Hopkins University, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Dax Fu, Chengfeng Merriman, Hongjie Dai, Hao Wan