Patents Assigned to Board to Trustees of the Leland Stanford Junior University
  • Publication number: 20150156402
    Abstract: Image data is processed to facilitate focusing and/or optical correction. According to an example embodiment of the present invention, an imaging arrangement collects light data corresponding to light passing through a particular focal plane. The light data is collected using an approach that facilitates the determination of the direction from which various portions of the light incident upon a portion of the focal plane emanate from. Using this directional information in connection with value of the light as detected by photosensors, an image represented by the light is selectively focused and/or corrected.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 4, 2015
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Yi-Ren Ng, Patrick Hanrahan, Marc S. Levoy, Mark A. Horowitz
  • Patent number: 9045561
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: June 2, 2015
    Assignee: THE BOARD OF TRUSTEE OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Patent number: 9046648
    Abstract: A 1D nanobeam photonic crystal cavity is provided that includes a substrate, where the substrate includes a dielectric medium, and a series of cutout features in the substrate, where each cutout feature includes a first curved surface and a second curved surface, where the first curved surface and the second curved surface form a meniscus shape, where the series of cutout features include an array of sizes of the meniscus shape cutouts, where edges of the meniscus shape and the array of sizes are disposed to form a pair of opposing parabolic dips proximal to a central region of the series of cutout features.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: June 2, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Waqas Mustafeez, Alberto Salleo
  • Patent number: 9045734
    Abstract: Populations enriched for smooth muscle progenitors are obtained by selection on the basis of expression of specific cell surface markers.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: June 2, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Irving L. Weissman, Yuval Rinkevich
  • Patent number: 9040484
    Abstract: Improved methods are provided for the recombinant synthesis of collagen, particularly collagen VII, in host cell, and for therapeutic delivery of the same. The recombinant collagen is produced in a host cell that has increased levels of prolyl-4-hydroxylase, relative to basal cell levels. The collagen produced by the methods of the invention has increased numbers of modified proline residues, relative to a recombinant collagen produced in a host cell having basal levels of prolyl-4-hydroxylase. The increased proline modification provides for a collagen having increased stability, including increased in vivo stability.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: May 26, 2015
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Department of Veterans Affairs
    Inventors: M. Peter Marinkovich, Alfred T. Lane, Jayakumar Rajadas
  • Patent number: 9039742
    Abstract: Devices, systems and methods for dynamically stabilizing the spine are provided. The devices include an expandable spacer having an undeployed configuration and a deployed configuration, wherein the spacer has axial and radial dimensions for positioning between the spinous processes of adjacent vertebrae. The systems include one or more spacers and a mechanical actuation means for delivering and deploying the spacer. The methods involve the implantation of one or more spacers within the interspinous space.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: May 26, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Moti Altarac, Shawn Tebbe, Daniel H. Kim, J. Christopher Flaherty
  • Patent number: 9041542
    Abstract: A system for preventing drowsiness in a driver by employing a thermal grill. The system includes a detection module and an intervention module. The detection module monitors a driver's parameters to determine whether the driver is drowsy. If the driver is determined to be drowsy, the intervention module activates a thermal grill with interlaced hot and cold regions. This activation causes the hot regions to approach one temperature and the cold regions to approach another. Additionally, this activation leads to an uncomfortable sensation for the driver, alerts the driver, and prevents the driver from getting drowsy.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: May 26, 2015
    Assignees: Honda Motor Co., Ltd., The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hsuan Chang, H. Craig Heller, Dennis A. Grahn
  • Publication number: 20150132774
    Abstract: Fluorescent protein voltage sensors for measuring membrane potential and imaging high-frequency neuronal electrical activity are disclosed. In particular, the invention relates to engineered protein voltage sensors that comprise a voltage-sensing domain comprising four transmembrane domains linked to a circularly permuted fluorescent protein, which is inserted into the extracellular loop between the third (S3) and fourth (S4) transmembrane segments of the voltage-sensing domain. Such fluorescent protein voltage sensors can be used for measuring the electrical activity of neurons, including single action potentials, trains of action potentials, and subthreshold potential changes and, in particular, for imaging high-frequency neuronal electrical activity.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 14, 2015
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michael Z. Lin, Francois St-Pierre
  • Publication number: 20150133317
    Abstract: Disclosed herein are compositions and methods for sequencing, analyzing, and utilizing samples such as single samples. Also disclosed herein are compositions and methods for matching together two or more sequences from a sample. Also disclosed herein are compositions and methods for expressing and screening molecules of interest.
    Type: Application
    Filed: April 27, 2012
    Publication date: May 14, 2015
    Applicants: Department of Veterans Affairs, The Board of Trustees of the Leland Stanford Junior University
    Inventors: William H. Robinson, Yann Chong Tan, Jeremy Sokolove
  • Patent number: 9029015
    Abstract: An electrochemical energy storage device includes a cathode, an anode, and an electrolyte disposed between the cathode and the anode. The anode includes a capacitive material as a majority component, and further includes an electrochemically active material as a minority component, such that an operating potential of the anode is configured according to a reaction potential of the electrochemically active material.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: May 12, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mauro Pasta, Colin Wessells, Robert A. Huggins, Yi Cui
  • Publication number: 20150125890
    Abstract: Methods, compositions and kits for determining the developmental potential of one or more embryos or pluripotent cells and/or the presence of chromosomal abnormalities in one or more embryos or pluripotent cells are provided. These methods, compositions and kits find use in identifying embryos and oocytes in vitro that are most useful in treating infertility in humans.
    Type: Application
    Filed: March 27, 2014
    Publication date: May 7, 2015
    Applicant: The Board of Trustees of The Leland Stanford Junior University
    Inventors: Connie C. WONG, Kevin E. LOEWKE, Thomas M. BAER, Rene A. REIJO-PERA, Barry BEHR
  • Patent number: 9023084
    Abstract: Systems and methods for stabilizing or adjusting the position of at least one spinal motion segment, such as a posterior element distraction system. The system includes an implantable member having at least one of a lateral member and a transverse member. The lateral member may be expandable in at least one dimension, for example, in a direction along the axis of the spine. The expandable member may be an inflatable balloon, expandable scaffolding, strut, or combination thereof and may provide stability and anchoring to the implantable member. The transverse member is configured to engage the spinous process and may extend from the lateral member or may extend between two laterally-opposed members. For example, the transverse members may be configured to engage an outer surface of the spinous process, and as such, act as a saddle or cradle.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: May 5, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Daniel H. Kim
  • Patent number: 9025157
    Abstract: An optical device, a method of configuring an optical device, and a method of using a fiber Bragg grating is provided. The optical device includes a fiber Bragg grating, a narrowband optical source, and at least one optical detector. The fiber Bragg grating has a power transmission spectrum as a function of wavelength with one or more resonance peaks, each comprising a local maximum and two non-zero-slope regions with the local maximum therebetween. The light generated by the narrowband optical source has a wavelength at a non-zero-slope region of a resonance peak that is selected such that one or more of the following quantities, evaluated at the resonance peak, is at a maximum value: (a) the product of the group delay spectrum and the power transmission spectrum and (b) the product of the group delay spectrum and one minus the power reflection spectrum.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: May 5, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: He Wen, Michel J. F. Digonnet, Shanhui Fan
  • Patent number: 9025456
    Abstract: Aspects relate to methods, devices and manufacturing relating to routing networks including a method for routing data units. The data units are individually routable through a routing network. A reservation request data unit is received over the routing network and from a sender. At least one speculative data unit associated with the reservation request data unit from the sender is received. The at least one speculative data unit is dropped in response to the at least one speculative data unit being blocked within the routing network. The sender is provided, over the routing network, a negative acknowledgement data unit that indicates the dropping of the at least one speculative data unit. The sender is provided a grant data unit indicating a start time. After the start time, at least one non-speculative data unit corresponding to the reservation request from the sender is received.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: May 5, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nan Jiang, William J. Dally
  • Patent number: 9024415
    Abstract: An electrical device includes a current transport layer formed using a layer of a topological material selected from the group of a topological insulator, a quantum anomalous hall (QAH) insulator, a topological insulator variant, and a topological magnetic insulator. In one embodiment, the current transport layer forms a conductive wire on an integrated circuit where the conductive wire includes two spatially separated edge channels, each edge channel carrying charge carriers propagating in one direction only. In other embodiments, an optical device includes an optical layer formed using a layer of the topological material. The optical layer can be a light absorbing layer, a light emitting layer, a light transport layer, or a light modulation layer.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 5, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Shoucheng Zhang, Xiao Zhang
  • Patent number: 9018179
    Abstract: Methods and compositions are provided for modulating, e.g., reducing, expression of a target sequence in mammals and mammalian cells. In the subject methods, an effective amount of an RNAi agent, e.g., an interfering ribonucleic acid (such as an siRNA or shRNA) or a transcription template thereof, e.g., a DNA encoding an shRNA, is introduced into a target cell, e.g., by being administered to a mammal that includes the target cell, e.g., via a hydrodynamic administration protocol. Also provided are RNAi agent pharmaceutical preparations for use in the subject methods. The subject methods and compositions find use in a variety of different applications, including academic and therapeutic applications.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: April 28, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark Kay, Anton McCaffrey
  • Patent number: 9018579
    Abstract: In an atom interferometer, improved results are obtained by configuring the interferometer to have a baseline fringe pattern, in combination with spatially resolved measurements at the interferometer ports. Two aspects of this idea are provided. In the first aspect, the atoms are configured to expand from an initial point-like spatial distribution. The result is an informative correlation between atom position and interferometer phase. In the second aspect, a phase shear is applied to the atom ensemble of an atom interferometer. In both cases, spatially resolved measurements at the interferometer ports can provide enhanced interferometer performance, such as single-shot operation.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: April 28, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark A. Kasevich, Jason M. Hogan, Susannah M. Dickerson, Alex Sugarbaker
  • Patent number: 9019482
    Abstract: In certain embodiments, an optical device and a method of use is provided. The optical device includes a fiber Bragg grating having a substantially periodic refractive index modulation along a length of the fiber Bragg grating. The fiber Bragg grating has a power transmission spectrum with a plurality of local transmission minima, wherein each pair of neighboring local transmission minima has a local transmission maximum therebetween. The local transmission maximum has a maximum power at a transmission peak wavelength. The optical device further includes a narrowband optical source in optical communication with a first optical path and a second optical path.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: April 28, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J. F. Digonnet, Shanhui Fan, He Wen, Matthew A. Terrel
  • Patent number: 9018603
    Abstract: A compact high-gradient, very high energy electron (VHEE) accelerator and delivery system (and related processes) capable of treating patients from multiple beam directions with great speed, using all-electromagnetic or radiofrequency deflection steering is provided, that can deliver an entire dose or fraction of high-dose radiation therapy sufficiently fast to freeze physiologic motion, yet with a better degree of dose conformity or sculpting than conventional photon therapy. In addition to the unique physical advantages of extremely rapid radiation delivery, there may also be radiobiological advantages in terms of greater tumor or other target control efficacy for the same physical radiation dose.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: April 28, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Billy Wiseman Loo, Peter G. Maxim, Valery A. Dolgashev
  • Patent number: 9011914
    Abstract: A two-component, molecular-recognition gelation strategy that enables cell encapsulation without the need for environmental triggers is provided. The two components, which in one example contain WW and polyproline-rich peptide domains that interact via hydrogen bonds, undergo a sol-gel phase transition upon simple mixing. Hence, physical gelation is induced by the mixing of two components at constant environmental conditions, analogous to the formation of chemically crosslinked epoxies by the mixing of two components. Variations in the molecular-level design of the two components are used to predictably tune the association energy and hydrogel viscoelasticity. These hetero-assembly physical hydrogels encapsulate neural progenitor cells at constant physiological conditions within 10 seconds to create uniform 3D cell suspensions that continue to proliferate, differentiate, and adopt well-spread morphologies.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: April 21, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Cheryl Wong Po Foo, Sarah C Heilshorn