Patents Assigned to Boise State University
  • Patent number: 9574489
    Abstract: A turbocharger control system for an internal combustion engine having first and second turbochargers connected in series includes first and second pressure sensors, and a controller. The first and second pressure sensors are disposed in an air intake of the engine, and are configured to sense boost pressure of the first and second turbochargers, respectively. The controller is configured to receive pressure signals from the first and second pressure sensors, and to control operation of at least one of the first and second turbochargers to maintain a desired boost pressure ratio.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: February 21, 2017
    Assignee: BOISE STATE UNIVERSITY
    Inventors: David Paul Schenker, Adrian Rothenbuhler
  • Patent number: 9550828
    Abstract: A method of treating cancer or metastasis is provided involving administering at least one oncostatin M (OSM) antagonist to a subject, wherein the subject has been diagnosed with cancer. Administration of an OSM antagonist such as a small molecule pharmaceutical is provided as well as an anti-OSM antibody, an anti-OSM aptamer, and an OSM mRNA antagonist. The OSM antagonists were found to inhibit or prevent tumor cell detachment, proliferation and metastasis in several cancer types.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: January 24, 2017
    Assignee: Boise State University
    Inventors: Cheryl Jorcyk, Dong Xu
  • Publication number: 20150275166
    Abstract: The present invention relates to a process of remediating wastewaters, preferably agricultural wastewaters resulting from animal production or contained animal feeding operation sites. The water is treated to promote assimilation of nutrients into algal biomass, which can be harvested and sold, and the resultant wastewater is then purified. According to the invention, short wavelength UV radiation (less than 280 nm wavelength) is used to pretreat wastewater, with the dose determined by absorbance of the water, not by bacterial load. Pretreated water exhibits changes in chromophoric dissolved organic matter that allows for improved and increased algae production by as much as 88%.
    Type: Application
    Filed: March 25, 2015
    Publication date: October 1, 2015
    Applicant: BOISE STATE UNIVERSITY
    Inventors: Kevin Feris, Maxine Prior
  • Patent number: 9140720
    Abstract: A method of measuring properties of a sample, the method comprising: measuring a deflection of a cantilever of a COIFM; measuring a voltage at an actuator contacting the cantilever and configured to counteract the deflection of the cantilever; measuring a voltage at a scan signal source, wherein the scan signal source is communicably coupled to the piezotube and configured to move the piezotube along an X- and a Y-axis; measuring a voltage at a feedback controller, wherein the feedback controller is communicably coupled to the piezotube and configured to move the piezotube along a Z-axis; switching a switch from a first position to a second position; switching the switch to a third position; correlating at least one of the measurements to (i) a repulsive force, and (ii) an attractive force.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: September 22, 2015
    Assignee: BOISE STATE UNIVERSITY
    Inventor: Byung I. Kim
  • Patent number: 9118006
    Abstract: A variable resistance memory device that includes a first electrode, a second electrode, and a first chalcogenide material layer between the first and second electrodes, the chalcogenide layer including carbon incorporated into germanium selenide chalcogenide glass. The variable resistance memory device may include a second chalcogenide material layer between the first chalcogenide material layer and the second electrode. The variable resistance memory device may include a first metallic layer between the second chalcogenide material layer and the second electrode. The variable resistance memory device may include a third chalcogenide material layer between the first metallic layer and the second electrode. The variable resistance memory device may include a fourth chalcogenide material layer between the first chalcogenide material layer and the first electrode. The first chalcogenide layer may be formed by co-sputtering carbon with Ge40Se60.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: August 25, 2015
    Assignee: Boise State University
    Inventor: Kristy A. Campbell
  • Patent number: 9091705
    Abstract: A high-speed atomic force microscope (HSAFM) is disclosed herein. The HSAFM includes a cantilever, a piezotube, an optical detector, a circuit element, and a feedback controller. The cantilever has a probe, and the piezotube is arranged in proximity to the probe. The optical detector is configured to detect deflection of the cantilever, and the circuit element is abutting a first end of the cantilever and is configured to exert a force on the cantilever to resist deflection of the cantilever. The circuit element is communicably connected to the optical detector by a first feedback loop. The feedback controller is communicably connected to the piezotube and configured to modulate the piezotube along the Z-axis towards and away from the probe. And the feedback controller is communicably connected to the optical detector through a second feedback loop.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: July 28, 2015
    Assignee: Boise State University
    Inventor: Byung I. Kim
  • Patent number: 9091251
    Abstract: An actuation apparatus includes at least one magnetic shape memory (MSM) element containing a material configured to expand and/or contract in response to exposure to a magnetic field. Among other things, the MSM element may be configured to pump fluid through a micropump by expanding and/or contracting in response to the magnetic field. The magnetic field may rotate about an axis of rotation and exhibit a distribution having a component substantially perpendicular to the axis of rotation. Further, the magnetic field distribution may include at least two components substantially orthogonal to one another lying in one or more planes perpendicular to the axis of rotation. The at least one MSM element may contain nickel, manganese, and gallium. A polymerase chain reaction (PCR) may be enhanced by contacting a PCR reagent and DNA material with the MSM element.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: July 28, 2015
    Assignee: Boise State University
    Inventors: Kari Ullakko, Peter Mullner, Greg Hampikian, Aaron Smith
  • Publication number: 20150093391
    Abstract: A method of treating cancer or metastasis is provided involving administering at least one oncostatin M (OSM) antagonist to a subject, wherein the subject has been diagnosed with cancer. Administration of an OSM antagonist such as a small molecule pharmaceutical is provided as well as an anti-OSM antibody, an anti-OSM aptamer, and an OSM mRNA antagonist. The OSM antagonists were found to inhibit or prevent tumor cell detachment, proliferation and metastasis in several cancer types.
    Type: Application
    Filed: September 5, 2014
    Publication date: April 2, 2015
    Applicant: BOISE STATE UNIVERSITY
    Inventors: Cheryl Jorcyk, Dong Xu
  • Patent number: 8966991
    Abstract: An apparatus for sensing strain or stress includes a body including magnetic shape-memory alloy (MSMA) material, having a first axis. A first drive coil and first sensor coil are wound around the body about the first axis. The drive coil is coupled to a power source and configured to generate an alternating magnetic field on the body. The first sensor coil is configured to detect changes in inductance of the body due to changes in magnetic permeability of the body with deformation thereof.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: March 3, 2015
    Assignee: Boise State University
    Inventors: Kari Ullakko, Kotaro Sasaki, Peter Müllner
  • Patent number: 8911748
    Abstract: The present invention relates to chimeric protein vaccines and methods of use thereof in the treatment of Staphylococcus aureus. One embodiment of the present invention provides a method of generating an immune response in a mammal, that includes administering to the mammal, a composition having a chimeric protein having at least one of: a portion of a cholera toxin, a portion of a heat-labile toxin, and a portion of a shiga toxin; and an antigen having at least one of: an antigenic material from S. aureus and an antigenic material from a S. aureus-specific polypeptide.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: December 16, 2014
    Assignee: Boise State University
    Inventor: Juliette Tinker
  • Publication number: 20140272972
    Abstract: The present invention provides compositions and methods for colorimetric detection schemes for detecting a variety of biomolecules. The compositions and methods employ DNA hybridization chain reaction for catalytic aggregation of gold nanoparticles. In this catalytic aggregation scheme, a single target DNA strand triggers the formation of multiple inter-particle linkages in contrast to the single linkage formed in conventional direct aggregation schemes.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: BOISE STATE UNIVERSITY
    Inventor: Jeunghoon Lee
  • Patent number: 8834898
    Abstract: The present invention relates to chimeric protein vaccines and methods of use thereof in the treatment of Staphylococcus aureus. One embodiment of the present invention provides a method of generating an immune response in a mammal, that includes administering to the mammal, a composition having a chimeric protein having at least one of: a portion of a cholera toxin, a portion of a heat-labile toxin, and a portion of a shiga toxin; and an antigen having at least one of an antigenic material from S. aureus and an antigenic material from a S. aureus-specific polypeptide.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 16, 2014
    Assignee: Boise State University
    Inventor: Juliette Tinker
  • Publication number: 20140249293
    Abstract: The present invention relates to methods for searching and identifying absent and rare peptide sequences from public databases and their uses in the treatment of pathological diseases. One embodiment of the present invention provides a method that includes: a) storing, in a memory or storage of a computing device, a set of at least one peptide sequence of fixed length; b) searching, by the computing device, for a peptide sequence from the set within at least one database having naturally-occurring amino acid sequences; and c) classifying, by the number of appearance in the database, the peptide sequence.
    Type: Application
    Filed: January 26, 2012
    Publication date: September 4, 2014
    Applicant: Boise State University
    Inventor: Greg Hampikian
  • Patent number: 8770305
    Abstract: Modular hydraulic packer-and-port system and corresponding methods of operation. The system may be installed for temporary, semi-permanent, or permanent deployments. The system and method may provide for hydraulic isolation of target zones in a well while allowing pass-through tubes to the target zones for taking samples, inserting monitoring sensors, and the like.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 8, 2014
    Assignee: Boise State University
    Inventors: Warren Barrash, Michael Cardiff
  • Patent number: 8707549
    Abstract: The present invention relates to ultrasound transducers for ultrasonic imaging systems and, in particular, to improved grip assemblies for ultrasound transducers. One grip assembly includes a locking plate defining first and second apertures and a coupling post extending from the locking plate. An interface plate has a first elongate extension being extendable at least partially through the first aperture and a second elongate extension being extendable at least partially through the second aperture. A handle is coupled to the locking plate and includes a grip, a coupling interface, and a neck extending between the grip and the coupling interface. The coupling interface defines a coupling aperture for receiving the coupling post.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: April 29, 2014
    Assignee: Boise State University
    Inventors: Joie Burns, Michelle Sabick, Seth Kuhlman, Carly Lockard, Brittany Siewert
  • Patent number: 8670267
    Abstract: A data storage method includes writing data to a ferromagnetic shape-memory material in its ferromagnetic state, the material exhibiting more than two stable states. A data storage device includes a non-volatile memory element containing a ferromagnetic shape-memory alloy in a martensite state, the shape-memory alloy being ferromagnetic in a plurality of stable states of the memory element.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: March 11, 2014
    Assignee: Boise State University
    Inventors: Chad S. Watson, William B. Knowlton, Peter Müllner
  • Patent number: 8611146
    Abstract: Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus “activating” the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: December 17, 2013
    Assignee: Boise State University
    Inventor: Kristy A Campbell
  • Publication number: 20130312142
    Abstract: A high-speed atomic force microscope (HSAFM) is disclosed herein. The HSAFM includes a cantilever, a piezotube, an optical detector, a circuit element, and a feedback controller. The cantilever has a probe, and the piezotube is arranged in proximity to the probe. The optical detector is configured to detect deflection of the cantilever, and the circuit element is abutting a first end of the cantilever and is configured to exert a force on the cantilever to resist deflection of the cantilever. The circuit element is communicably connected to the optical detector by a first feedback loop. The feedback controller is communicably connected to the piezotube and configured to modulate the piezotube along the Z-axis towards and away from the probe. And the feedback controller is communicably connected to the optical detector through a second feedback loop.
    Type: Application
    Filed: May 1, 2013
    Publication date: November 21, 2013
    Applicant: Boise State University
    Inventor: Boise State University
  • Patent number: 8586194
    Abstract: Magnetic materials and methods exhibit large magnetic-field-induced deformation/strain (MFIS) through the magnetic-field-induced motion of crystallographic interfaces. The preferred materials are porous, polycrystalline composite structures of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. The materials are preferably made from magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga, formed into an open-pore foam, for example, by space-holder technique. Removal of constraints that interfere with MFIS has been accomplished by introducing pores with sizes similar to grains, resulting in MFIS values of 0.12% in polycrystalline Ni—Mn—Ga foams, close to the best commercial magnetostrictive materials. Further removal of constraints has been accomplished by introducing pores smaller than the grain size, dramatically increasing MFIS to 2.0-8.7%.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 19, 2013
    Assignees: Boise State University, Northwestern University
    Inventors: Peter Mullner, Markus Chmielus, Cassie Witherspoon, David C. Dunand, Xuexi Zhang, Yuttanant Boonyongmaneerat
  • Patent number: 8549660
    Abstract: An apparatus may comprise an optical detector configured to detect an optical beam reflected from a cantilever. The apparatus may further comprise an optical fiber probe suspended from the cantilever and a piezotube configured to move a sample substance in proximity to the optical fiber probe. The cantilever may be configured to deflect in response to an interfacial force between the sample substance and the optical fiber probe. The apparatus may further comprise a feedback controller communicatively coupled to the optical detector and a semiconductive circuit element abutting the cantilever. In response to detecting movement of the optical beam reflected from the cantilever, the feedback controller may apply a voltage to the semiconductive circuit element, which may reduce deflection of the cantilever. The voltage applied by the feedback controller may indicate a strength of the interfacial force between the sample substance and the optical fiber probe.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: October 1, 2013
    Assignee: Boise State University
    Inventor: Byung Kim