Patents Assigned to Boise State University
  • Patent number: 8549660
    Abstract: An apparatus may comprise an optical detector configured to detect an optical beam reflected from a cantilever. The apparatus may further comprise an optical fiber probe suspended from the cantilever and a piezotube configured to move a sample substance in proximity to the optical fiber probe. The cantilever may be configured to deflect in response to an interfacial force between the sample substance and the optical fiber probe. The apparatus may further comprise a feedback controller communicatively coupled to the optical detector and a semiconductive circuit element abutting the cantilever. In response to detecting movement of the optical beam reflected from the cantilever, the feedback controller may apply a voltage to the semiconductive circuit element, which may reduce deflection of the cantilever. The voltage applied by the feedback controller may indicate a strength of the interfacial force between the sample substance and the optical fiber probe.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: October 1, 2013
    Assignee: Boise State University
    Inventor: Byung Kim
  • Patent number: 8507556
    Abstract: A core-shell nanoparticle having a core that includes a fluorophore and a first oxide of a first metal and a shell that includes a second oxide of a second metal such that the first oxide and the second oxide are different. Also disclosed are methods relating to the core-shell nanoparticle.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: August 13, 2013
    Assignee: Boise State University
    Inventors: Hua Wang, Denise Wingett, Kevin Feris, Mfadhusudan R. Kongara, Alex Punnoose
  • Publication number: 20130192601
    Abstract: A flow-inflating respiratory face mask is disclosed that includes a thin, pliant skirt that surrounds the base of the face mask. The skirt inflates automatically when the face mask receives external pressurized air. The skirt is compliant, soft, and adapts easily to the topography of the face which produces a good fit and adds to the comfort of the patient.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Applicant: Boise State University
    Inventors: Uwe Reischl, Lonny Ashworth, Lutana Haan
  • Patent number: 8466425
    Abstract: A chalcogenide glass radiation sensor comprising a chalcogenide glass layer coupled to at least two electrodes and a metal source, and a method using the same are disclosed. The chalcogenide glass layer has a resistivity and the at least two electrodes are configured to facilitate the measurement of the resistivity of the chalcogenide glass layer. The coupling of the metal source and the chalcogenide glass layer is such that the resistivity of the chalcogenide glass layer changes upon exposure to ionizing radiation. The metal source is configured to be external to an electric field that may form between the at least two electrodes as the resistivity of the chalcogenide glass layer is measured.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: June 18, 2013
    Assignee: Boise State University
    Inventors: Maria Mitkova, Darryl P. Butt
  • Patent number: 8467236
    Abstract: A continuously variable resistor is disclosed. The continuously variable resistor may comprise a first chalcogenide layer and a second chalcogenide layer. The second chalcogenide layers may be connected to the first chalcogenide layer and may have a metal interspersed within it. The second chalcogenide layer may be metal-rich, in a state of solid solution with the interspersed metal. The continuously variable resistor may be configured to exhibit NDR behavior. The continuously variable resistor may be configured to have three or more substantially non-volatile resistance states.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: June 18, 2013
    Assignee: Boise State University
    Inventor: Kristy A. Campbell
  • Publication number: 20130119336
    Abstract: Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus “activating” the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity.
    Type: Application
    Filed: October 22, 2012
    Publication date: May 16, 2013
    Applicant: BOISE STATE UNIVERSITY
    Inventor: BOISE STATE UNIVERSITY
  • Publication number: 20130091954
    Abstract: An apparatus for sensing strain or stress includes a body including magnetic shape-memory alloy (MSMA) material, having a first axis. A first drive coil and first sensor coil are wound around the body about the first axis. The drive coil is coupled to a power source and configured to generate an alternating magnetic field on the body. The first sensor coil is configured to detect changes in inductance of the body due to changes in magnetic permeability of the body with deformation thereof.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 18, 2013
    Applicant: BOISE STATE UNIVERSITY
    Inventor: BOISE STATE UNIVERSITY
  • Patent number: 8314985
    Abstract: A high-speed optical modulator based on Surface Plasmon-Polariton (SPP) at the hetero-junction of a metal-insulator-semiconductor (MIS) tunneling diode and including a phase-matching optical element, such as a prism or gold-lattice structure, is described. An investigation using the coupled mode theory shows that the applied bias across the hetero-junction changes the optical reflectance of an optically coupled MIS tunneling diode, such as a prism-coupled MIS tunneling diode or a gold lattice-coupled MIS tunneling diode, while the modulation efficiency achievable of the device depends on the thickness of the metal film used to construct the tunneling diode.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: November 20, 2012
    Assignee: Boise State University
    Inventor: Wan Kuang
  • Patent number: 8295081
    Abstract: Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus “activating” the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: October 23, 2012
    Assignee: Boise State University
    Inventor: Kristy A. Campbell
  • Patent number: 8284590
    Abstract: A circuit with a capacitive device is disclosed. The circuit may comprise a capacitive device connected between a first conductor and a second conductor. The capacitive device may comprise a first electrode connected to the first conductor and a second electrode being connected to the second conductor. A chalcogenide layer may be connected to the first electrode and to a metal chalcogenide layer.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: October 9, 2012
    Assignee: Boise State University
    Inventor: Kristy A. Campbell
  • Patent number: 8238146
    Abstract: The invention relates to the use of chalcogenide devices exhibiting negative differential resistance in integrated circuits as programmable variable resistor components. The present invention is a continuously variable integrated analog resistor made of a chalcogenide material, such as a GeSeAg alloy. Continuously variable resistor states are obtained in the material via application of an electrical pulse to it. The pulse sequence, duration and applied potential determine the value of the resistance state obtained.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: August 7, 2012
    Assignee: Boise State University
    Inventor: Kristy A. Campbell
  • Patent number: 8233314
    Abstract: Apparatus and methods are disclosed that enable writing data on, and reading data of, multi-state elements having greater than two states. The elements may be made of magnetoplastic and/or magnetoelastic materials, including, for example, magnetic shape-memory alloy or other materials that couple magnetic and crystallographic states. The writing process is preferably conducted through the application of a magnetic field and/or a mechanical action. The reading process is preferably conducted through atomic-force microscopy, magnetic-force microscopy, spin-polarized electrons, magneto-optical Kerr effect, optical interferometry or other methods, or other methods/effects. The multifunctionality (crystallographic, magnetic, and shape states each representing a functionality) of the multi-state elements allows for simultaneous operations including read&write, sense&indicate, and sense&control.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: July 31, 2012
    Assignee: Boise State University
    Inventors: Peter Mullner, William B Knowlton
  • Patent number: 8187638
    Abstract: Here we disclose the response of normal human cells to ZnO nanoparticles under different signaling environments and compare it to the response of cancerous cells. ZnO nanoparticles exhibit a strong preferential ability to kill cancerous T cells (˜28-35X) compared to normal cells. Interestingly, the activation state of the cell contributes toward nanoparticle toxicity as resting T cells display a relative resistance while cells stimulated through the T cell receptor and CD28 costimulatory pathway show greater toxicity in direct relation to the level of activation. The novel findings of cell selective toxicity towards potential disease causing cells indicate a potential utility of ZnO nanoparticle in the treatment of cancer and/or autoimmunity.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: May 29, 2012
    Assignee: Boise State University
    Inventors: Alex Punnoose, Madhusudan R. Kongara, Denise Wingett
  • Patent number: 8008816
    Abstract: A magnetoplastic and/or magnetoelastic material transduces linear motion, delivered to it by a mechanical connection, into a change of magnetic field, via twin boundary deformation. A bias magnetic field assures a net change of magnetization during the deformation, and a coil, coaxial with the magnetoplastic/elastic material, couples the magnetic field change to an electrical output. The bias magnetic field or a device that produces strain in a reverse direction resets the magnetomechanical transducer to its initial state. Microgenerators using the magnetoplastic/elastic material may be connected in series or parallel, combined with solar cells, and used to capture energy from passive motion such as random, cyclic or vibrational motion.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: August 30, 2011
    Assignee: Boise State University
    Inventors: Greg Hampikian, Peter Mullner
  • Patent number: 7964290
    Abstract: A magnetic materials construct and a method to produce the construct are disclosed. The construct exhibits large magnetic-field-induced deformation through the magnetic-field-induced motion of crystallographic interfaces. The construct is a porous, polycrystalline composite structure of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. If the struts are polycrystalline, they have a “bamboo” microstructure wherein the grain boundaries traverse the entire width of the strut. The material from which the construct is made is preferably a magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga. The construct is preferably an open-pore foam. The foam is preferably produced with a space-holder technique. Space holders may be dissolvable ceramics and salts including NaAlO2.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: June 21, 2011
    Assignees: Boise State University, Northwestern University
    Inventors: Peter Mullner, Markus Chmielus, David C. Dunand, Yuttanant Boonyongmaneerat
  • Patent number: 7945996
    Abstract: A compact and aesthetically-pleasing self-closing door hinge comprises a gravity-assist feature and preferably a spring-assist feature, wherein the spring may be easily adjustable, replaceable, and even left out of the hinge. The preferred embodiment is reversible for easily changing from a right-opening to a left-opening door, and includes hinge lift-off capability, wherein the door and the blade connecting the door to the hinge body may be lifted up off the body of the hinge without any significant disassembly of the hinge. The spring is preferably placed around the gravity-assist cams of the hinge, rather than above or below the cams, which arrangement significantly reduces the overall height of the hinge with only slightly increased diameter of the hinge main body. The preferred hinge has no bolts or other fasteners visible or protruding out from the main housing of the hinge, and the preferred hinge has no exposed spring sleeve.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: May 24, 2011
    Assignee: Boise State University
    Inventor: Joshua Gunderson
  • Publication number: 20110110139
    Abstract: Apparatus and methods are disclosed that enable writing data on, and reading data of, multi-state elements having greater than two states. The elements may be made of magnetoplastic and/or magnetoelastic materials, including, for example, magnetic shape-memory alloy or other materials that couple magnetic and crystallographic states. The writing process is preferably conducted through the application of a magnetic field and/or a mechanical action. The reading process is preferably conducted through atomic-force microscopy, magnetic-force microscopy, spin-polarized electrons, magneto-optical Kerr effect, optical interferometry or other methods, or other methods/effects. The multifunctionality (crystallographic, magnetic, and shape states each representing a functionality) of the multi-state elements allows for simultaneous operations including read&write, sense&indicate, and sense&control.
    Type: Application
    Filed: May 4, 2010
    Publication date: May 12, 2011
    Applicant: BOISE STATE UNIVERSITY
    Inventors: PETER MULLNER, WILLIAM B. KNOWLTON
  • Patent number: 7939560
    Abstract: Multifunctional “smart” nanostructures are disclosed that include fluorescein isothiocyanate (FITC)-encapsulated SiO2 core-shell particles with a nanoscale ZnO finishing layer, wherein an outer ZnO layer is formed on the SiO2-FITC core. These ˜200 nm sized particles showed promise toward cell imaging and cellular uptake studies using the bacterium Escherichia coli and Jurkat cancer cells, respectively. The FITC encapsulated ZnO particles demonstrated excellent selectivity in preferentially killing Jurkat cancer cells with minimal toxicity to normal primary immune cells (18% and 75% viability remaining, respectively, after exposure to 60 ?g/mL) and inhibited the growth of both gram-positive and gram-negative bacteria at concentrations ?250-500 ?g/mL (for Staphylococcus aureus and Escherichia coli, respectively).
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: May 10, 2011
    Assignee: Boise State University
    Inventors: Hua Wang, Denise Wingett, Kevin Feris, Madhusudan R Kongara, Alex Punnoose
  • Patent number: 7930926
    Abstract: Permeability of a fluid through a saturated material is determined by measuring the dynamic response of that saturated material to shaking vibrations and/or shear wave propagation, and then mapping the dynamic response (preferably, viscoelastic stiffness and damping properties) to an invented model (called “KVMB”) that yields the property of permeability. The preferred embodiments may use shear waves, inertial effects, and/or transmission effects, but preferably not compression, to force fluids through the pores. The mapping preferably predicts two possible mappings to permeability, coupled and uncoupled. The preferred methods are both internally consistent and directly related to known laws of physics rather than dependent on empirical calibrations.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: April 26, 2011
    Assignee: Boise State University
    Inventor: Paul Michaels
  • Patent number: 7924608
    Abstract: Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus “activating” the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: April 12, 2011
    Assignee: Boise State University
    Inventor: Kristy A. Campbell