Abstract: A passenger seat includes a bottom support to be connected to the aircraft floor, a seat pan frame, and a support structure interconnecting the seat pan frame to the bottom support. A front support member defines a frontmost portion of the support structure, and has a top end connected to a front end of the seat pan frame and a bottom end connected to the bottom support. The front end of the seat pan frame is forwardly offset from a front end of the bottom support and the top end of the front support member is forwardly offset from its bottom end such that an empty space is defined across a width of the seat between the seat pan frame and the floor, forwardly of the support structure, forwardly of the bottom support, and rearwardly of a vertical plane aligned with the front end of the seat pan frame.
Type:
Grant
Filed:
December 18, 2018
Date of Patent:
June 14, 2022
Assignee:
BOMBARDIER INC.
Inventors:
Philippe Erhel, Jerome Vigeant, Chen Hua Yu
Abstract: An aircraft including a fuselage extending along a longitudinal axis; forward swept wings extending from the fuselage; at least one horizontal stabilizer secured to the fuselage; and a distributed electrical propulsion system operatively connected to an electrical power source. The distributed electrical propulsion system have an air intake located rearward of an intersection between the forward swept wings and the fuselage open to a boundary layer region on a surface of the fuselage.
Abstract: A system and method for deploying a flight control surface. The method includes displacing actuators engaged with the flight control surface during an initial period wherein each actuator displaces from zero speed to a deployment speed, and during a deployment period after the initial period. The method includes during the deployment period, controlling displacement of at least one of the actuators in response to actuator status information received therefrom. The method includes during the initial period, limiting an acceleration of said actuator from the zero speed to the deployment speed. The system has a control unit with a force fight controller and an acceleration limiter.
Abstract: Fuel systems, apparatus and associated methods for preventing or hindering unwanted fuel transfer between fuel tanks of aircraft are described. An exemplary apparatus comprises a conduit portion disposed inside a fuel tank for receiving fuel in the first fuel tank. The conduit portion includes an orifice through a wall of the conduit. The orifice permits venting an interior of the conduit portion to an interior of the fuel tank to prevent unwanted fuel transfer due to siphoning. A deflector is disposed and configured to deflect a stream of fuel discharged from the orifice during fuel transfer.
Abstract: Methods and systems for controlling an aircraft cabin display are described herein. The method comprises obtaining a reflected color on a surface adjacent to a cabin window of an aircraft, generating an image having an image color in accordance with the reflected color on the surface adjacent to the cabin window, and displaying the image having the image color on a display device covering the cabin window.
Abstract: A slat (50) for an aircraft wing comprises a leading edge (51) defining a leading edge line (61), a trailing edge (52) defining a trailing edge line (62), the leading and trailing edges line defining a slat plane, the chord distance (69) extending normal to the leading edge and measured along the slat plane; an inboard edge extending between the leading and trailing edges; and an outboard edge (56) extending between the leading and trailing edges. The outboard edge comprises a first side portion having a projection on the plane defining a first side line (63), and a second side portion having a projection on the plane defining a second side line (64), the second side line being disposed at a first angle to the first side line and at a second angle to the leading edge line as it extends toward the inboard and trailing edges. A wing assembly and an aircraft including the slat are also disclosed.
Abstract: Systems and methods associated with electrical systems of aircraft are disclosed. A method disclosed herein comprises generating electricity using an electric generator operatively coupled to an engine of the aircraft, supplying the electricity generated using the electric generator to a baseline power bus; generating electricity using an electric starter generator operatively coupled to the engine; and supplying the electricity generated using the electric starter generator to a supplemental power bus independent from the baseline power bus.
Abstract: Trailing edge assemblies, couplers and methods for deploying a trailing edge flap of an aircraft wing are disclosed. An exemplary method disclosed herein comprises guiding an aft portion of the trailing edge flap (28) along an elongated track member (36C) as the trailing edge flap (28) moves toward the deployed position; guiding a forward portion of the trailing edge flap (28) along the elongated track member (36C) as the trailing edge flap (28) moves toward the deployed position; and accommodating transverse movement of the forward portion of the trailing edge flap (28) relative to the elongated track member (36C).
Type:
Grant
Filed:
June 27, 2017
Date of Patent:
April 5, 2022
Assignee:
BOMBARDIER INC.
Inventors:
Dmitry Budnitsky, Howard Ian Smith, Thomas Hanson
Abstract: A storage container (100) has a base (102) defining at least one storage compartment (202, 204, 206, 208, 210, 212), a top (104) movable between closed and opened positions, latching and locking assemblies. The latching assembly (500) has a latching actuator (110) movable between first and second positions. The latching assembly (500) locks the top (104) to the base (102) when the top (104) is in the closed position and the latching actuator (110) is in the first position and releases the top (104) from the base (102) when the latching actuator (110) is in the second position. The locking assembly has a lock actuator (801) having actuated and released positions. The top (104) is movable when the lock actuator (801) is in the actuated position. The locking assembly locking the top (104) in the open, closed, or an intermediate position when the lock actuator (801) is in the released position.
Abstract: Airstair systems and associated methods are disclosed. In one embodiment, the airstair comprises a deployable upper step, a primary deployment device and a secondary deployment device. The upper step is movable between a stowed configuration when a door of the aircraft is closed and a deployed configuration when the door is open. The primary deployment device resiliently biases the upper step toward the deployed configuration. The secondary deployment device is movable in coordination with a movement of the door and configured to drive the deployable upper step toward the deployed configuration during opening of the door and during a failure of the primary deployment device.
Type:
Grant
Filed:
November 28, 2019
Date of Patent:
February 22, 2022
Assignee:
BOMBARDIER INC.
Inventors:
John Richard Savidge, Peter Lyver, Remi Crozier, Patrick Serres
Abstract: A headrest for a seat having a backrest frame and a base. The headrest includes a displacement member mountable to the backrest frame to position a lower end of the displacement member in front of the backrest frame and above the base. The displacement member is displaceable relative to the backrest frame to adjust a height of the headrest. A tilt member extends between a pivot end pivotably mounted to the displacement member at a joint, and a head support end disposed above the pivot end to support a rear portion of the head. The joint defines a pivot axis and is positioned in front of the backrest frame and above the base. The tilt member is pivotable about the pivot axis to displace the head support end toward and away from the displacement member.
Abstract: The aircraft control systems and methods disclosed herein are configured to detect a residual error associated with a flight control computer of an aircraft and mitigate the effect(s) of such residual error in order to maintain safe operation of the aircraft. In some embodiments, the systems and methods are configured to detect an out-of-flight-envelope situation of the aircraft and determine whether or not the flight control computer is attempting to recover the aircraft from the out-of-flight-envelope situation. If the flight control computer is perceived as attempting to recover the aircraft from the out-of-flight-envelope situation, the flight control computer is permitted to continue controlling the aircraft. Otherwise, the excursion outside of the normal flight envelope is perceives as potentially having been caused by a residual error and the flight control computer is prevented from continuing to control the aircraft.
Abstract: Aircraft pitch control systems and methods are disclosed. An aircraft pitch control system (28) comprises a movable horizontal stabilizer (24) and an elevator (26) movably coupled to the horizontal stabilizer. The elevator is electronically geared to the horizontal stabilizer.
Type:
Grant
Filed:
April 19, 2017
Date of Patent:
January 25, 2022
Assignee:
BOMBARDIER INC.
Inventors:
Thomas Ahn, Clinton Eric Tanner, Thomas Nelson, Scott Black
Abstract: Systems and methods for controlling a fixed-wing aircraft during flight are disclosed. The aircraft comprises first and second flight control surfaces of different types. The method comprises determining that a pilot command of the first flight control surface will excite a structural flexible mode of the aircraft and then executing the pilot command of the first flight control surface in conjunction with a command of the second flight control surface to mitigate the effect of the excitation of the structural flexible mode of the aircraft.
Abstract: An aircraft flap deployment system has a track, a carriage supported by the track; an actuator operatively connected to the carriage for moving the carriage along the track between various carriage positions; a flap pivotally connected to the carriage and to a link such that each position of the carriage has a corresponding flap position; and a flap controller communicating with the actuator for controlling actuation of the actuator. In at least one carriage position, the flap is in an intermediate flap position at a negative flap angle and the actuator maintains the carriage and the flap in position. An aircraft wing assembly having the flap deployment system, an aircraft having the aircraft wing assembly, and a method for controlling a position of a flap of an aircraft are also disclosed.
Abstract: Apparatus and method for conditioning engine-heated air onboard an aircraft including a heat exchanger (140) at least partially disposed in a pylon structure (118) for supporting an engine (134) of the aircraft. The pylon heat exchanger (140) extracts heat from a flow (156) of engine-heated air. A flow (142) of ambient air is provided to the pylon heat exchanger (140) from a ram air inlet (150).
Abstract: Apparatus for improving flow characteristics around aircraft wings by obstructing air flow through an aperture formed in a wing skin for a movable duct or track are disclosed. In one embodiment, the apparatus comprises a substantially rigid panel movable at least partially across the aperture for at least partially occluding the aperture and for accommodating movement of a slat track extending through the aperture. In another embodiment, the apparatus comprises a hinged panel configured to swing outwardly from an outer side of the wing skin toward an open position to accommodate movement of an anti-icing duct extending through the aperture and to swing toward a closed position at least partially occluding the aperture.
Type:
Grant
Filed:
June 9, 2017
Date of Patent:
December 7, 2021
Assignee:
BOMBARDIER INC.
Inventors:
Matthew Poloni, Julien Lardy, Jeffrey Massey, Faris Jasem
Abstract: Systems and methods of improving the operation of an aircraft during flight are disclosed. In one embodiment, the method comprises deploying spoilers as the speed of the aircraft approaches the maximum operating Mach number of the aircraft, and keeping the spoilers deployed when the speed of the aircraft is substantially at the maximum operating Mach number.
Abstract: An aircraft wing includes a groove extending along a length between a forward extremity and an aft extremity. A forward segment of the groove extends upwardly to the forward extremity. The forward extremity is a highest point of the groove. A flap carriage is mounted to the groove and displaceable therealong. A flap is pivotably attached to the flap carriage to define a flap pivot axis about which the flap is rotatable. The flap is displaceable with the flap carriage. An actuator has an arm being extendable between an extended position and a retracted position to displace the flap carriage along the groove. The flap carriage in the retracted position being disposed in the forward segment of the groove and the flap being rotated about the flap pivot axis to position the flap trailing edge in negative flap deployment.