Patents Assigned to Boreskov Institute of Catalysis
  • Patent number: 10589259
    Abstract: A composition useful in oxidative desulphurization of gaseous hydrocarbons is described. It comprises a CuZnAl—O mixed oxide, and an H form of a zeolite. The mixed oxide can contain one or more metal oxide promoters. The H form of the zeolite can be desilicated, and can also contain one or more transition metals.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: March 17, 2020
    Assignees: Saudi Arabian Oil Company, Boreskov Institute of Catalysis
    Inventors: Omer Refa Koseoglu, Yaming Jin, Zinfer Ismagilov, Svetlana Yashnik, Mikhail Kerzhentsev, Valentin Parmon
  • Patent number: 10384197
    Abstract: A composition useful in oxidative desulfurization of gaseous hydrocarbons is described. It comprises a CuZnAl—O mixed oxide, and an H form of a zeolite. The mixed oxide can contain one or more metal oxide promoters. The H form of the zeolite can be desilicated, and can also contain one or more transition metals.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: August 20, 2019
    Assignees: SAUDI ARABIAN OIL COMPANY, BORESKOV INSTITUTE OF CATALYSIS
    Inventors: Omer Refa Koseoglu, Yaming Jin, Zinfer Ismagilov, Svetlana Yashnik, Mikhail Kerzhentsev, Valentin Parmon
  • Patent number: 9663725
    Abstract: A catalytic composition is disclosed, which exhibits an X-ray amorphous oxide, with a spinel formula and highly dispersed crystals of ZnO, CuO, and optionally CeO2. The composition is useful in oxidative and adsorptive processes for removing sulfur from gaseous hydrocarbons.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: May 30, 2017
    Assignees: Saudi Arabian Oil Company, Boreskov Institute of Catalysis
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Zinfer Ismagilov, Svetlana Yashnik, Mikhail Kerzhentsev, Valentin Parmon
  • Patent number: 9457293
    Abstract: One exemplary embodiment can be a process for removing one or more sulfur compounds from a first liquid. The process can include passing the first liquid through a first inlet and a second liquid through a second inlet, and passing the first liquid through a first outlet and the second liquid through a second outlet of a vessel. The vessel may further have a plurality of vortex contactors. Often, the plurality of vortex contactors has a first vortex contactor, in turn including at least one wall and a frustum. The at least one wall can form a perimeter about an interior space and include a first side and a second side forming a passageway communicating the first liquid from an exterior to the interior space, and a frustum positioned proximate to the passageway and abutting the at least one wall for facilitating contacting of the first and second liquids to extract the one or more sulfur compounds from the first liquid to the second liquid.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: October 4, 2016
    Assignees: UOP LLC, BORESKOV INSTITUTE OF CATALYSIS
    Inventors: Aziz Sattar, Daniel K. Aiken, Andrey Kuzmin
  • Patent number: 9457294
    Abstract: One exemplary embodiment can be an apparatus for contacting a first liquid and a second liquid. The apparatus can include a vessel. The vessel can include a wall and a funnical frustum. The wall may form a perimeter about an interior space and include a first side and a second side forming a passageway communicating at least one of the first and second liquids to the interior space. The funnical frustum may be positioned proximate to the passageway and abut the wall for facilitating contacting of the first and second liquids.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: October 4, 2016
    Assignees: UOP LLC, BORESKOV INSTITUTE OF CATALYSIS
    Inventors: Andrey Kuzmin, Aziz Sattar, Lev Davydov
  • Patent number: 9458068
    Abstract: One exemplary embodiment can be a process for removing one or more sulfur compounds from a first liquid. The process can include passing the first liquid through a first inlet and a second liquid through a second inlet of a vessel, passing the first and second liquids through the passageway for facilitating contacting of the first and second liquids to extract the one or more sulfur compounds from the first liquid to the second liquid, and passing the first liquid through the first outlet and the second liquid through the second outlet. Often, the vessel has a plurality of vortex contactors, and a first outlet and a second outlet. The plurality of vortex contactors can include a first vortex contactor, in turn having at least one wall forming a perimeter about an interior region and including a first side and a second side forming a passageway communicating the first liquid from an exterior to the interior region, and a frustum positioned proximate to the passageway and abutting the at least one wall.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: October 4, 2016
    Assignees: UOP LLC, BORESKOV INSTITUTE OF CATALYSIS
    Inventors: Andrey Kuzmin, Aziz Sattar, Lev Davydov, Jonathan Andrew Tertel
  • Patent number: 9328037
    Abstract: A process for making linear alkyl aromatics is described. The process involves preparing the paraffin feed by dehydrogenating normal paraffins, selectively hydrogenating any diolefins, and adsorbing any aromatics to form an olefin feed. The olefin feed is contacted with an aromatic feed in the presence of an ionic liquid catalyst to form a mixture of alkylated aromatics. The ionic liquid catalyst is separated from the mixture of alkylated aromatics by gravity, and any ionic liquid retained in the alkylated aromatics is removed by adsorption or extraction. The mixture of alkylated aromatics is then separated into monoalkylated aromatics and dialkylated aromatics.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: May 3, 2016
    Assignees: UOP LLC, BORESKOV INSTITUTE OF CATALYSIS
    Inventors: Mark G. Riley, Alakananda Bhattacharyya, Nikolay Yu. Adonin, Mariya N. Timofeeva, Sergey A. Prikhodko, Bair S. Bal'zhinimaev
  • Patent number: 9266809
    Abstract: A solid terephthalic acid composition and a process for producing terephthalic acid from para-xylene. The process comprises forming a mixture comprising the para-xylene, a solvent, a bromine source, and a catalyst; and oxidizing the para-xylene by contacting the mixture with an oxidizing agent at oxidizing conditions to produce a solid oxidation product comprising terephthalic acid, para-toluic acid, 4-carboxybenzaldehyde. The solvent comprises a carboxylic acid having from 1 to 7 carbon atoms and an dialkyl imidazolium ionic liquid; and the catalyst comprises at least one of cobalt, titanium, manganese, chromium, copper, nickel, vanadium, iron, molybdenum, tin, cerium, and zirconium. The solid terephthalic acid composition comprises, less than about 4,000 ppm-wt 4-carboxybenzaldehyde content, and more than about 2,000 ppm-wt a para-toluic acid.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: February 23, 2016
    Assignees: UOP LLC, BORESKOV INSTITUTE OF CATALYSIS
    Inventors: Alakananda Bhattacharyya, Joseph A. Kocal, Joel T. Walenga, Nikolay Y. Adonin, Nina I. Kuznetsova, Bair S. Bal'zhinimaev
  • Patent number: 9233319
    Abstract: One embodiment can be an apparatus for contacting a first liquid and a second liquid. The apparatus can include a vessel, which in turn, may include at least one wall, a first member, and a funnical frustum. The at least one wall can form a perimeter about an interior space. Also, the first member can be positioned within the interior space and form a plurality of passageways. Each passageway may be bordered by a first side and a second side from an outer region to an interior surface of the first member. Generally, the funnical frustum is positioned downstream of the first member to facilitate a swirling of at least one of the first and second liquids.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: January 12, 2016
    Assignees: UOP LLC, BORESKOV INSTITUTE OF CATALYSIS
    Inventors: Andrey Kuzmin, Aziz Sattar, Lev Davydov
  • Patent number: 9079846
    Abstract: A process for oxidizing solid crude terephthalic acid is described. The process includes contacting solid crude terephthalic acid with a solvent comprising a carboxylic acid and one or more of an ionic liquid or ammonium acetate; a bromine source; a catalyst; and an oxidizing agent to produce solid purified terephthalic acid at a temperature of about 100 to about 210° C., and a pressure of about 2 to about 4.5 MPa, for a time of about 5 to about 60 min, and recovering the solid purified terephthalic acid.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: July 14, 2015
    Assignees: UOP LLC, BORESKOV INSTITUTE OF CATALYSIS SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES
    Inventors: Alakananda Bhattacharyya, Nina Kuznetsova, Bair S. Bal'zhinimaev
  • Patent number: 9045407
    Abstract: A process and a mixture for oxidizing an alkyl-aromatic compound comprises forming a mixture comprising the alkyl-aromatic compound, a solvent, a bromine source, and a catalyst; and contacting the mixture with an oxidizing agent at oxidizing conditions to produce an oxidation product comprising at least one of an aromatic aldehyde, an aromatic alcohol, an aromatic ketone, and an aromatic carboxylic acid. The solvent comprises a carboxylic acid having from 1 to 7 carbon atoms and an ionic liquid selected from the group consisting of an imidazolium ionic liquid, a pyridinium ionic liquid, a phosphonium ionic liquid, a tetra alkyl ammonium ionic liquid, and combinations thereof. The catalyst comprises at least one of cobalt, titanium, manganese, chromium, copper, nickel, vanadium, iron, molybdenum, tin, cerium, and zirconium.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: June 2, 2015
    Assignees: UOP LLC, Boreskov Institute of Catalysis
    Inventors: Alakananda Bhattacharyya, Joseph A. Kocal, Joel T. Walenga, Nikolay Y. Adonin, Nina I. Kuznetsova, Bair S. Bal'zhinimaev
  • Patent number: 8906227
    Abstract: Desulfurization of hydrocarbon feeds is achieved by first contacting the entire feed with a hydrodesulfurization catalyst in a hydrodesulfurization reaction zone operating under mild conditions; a flashing column downstream of the hydrodesulfurization reaction zone fractionates the effluent to obtain a first fraction which contains refractory organosulfur compounds and a second fraction that is substantially free of organosulfur compounds, since the organosulfur compounds boiling in the range of this fraction were the labile organosulfur compounds which were initially removed by mild hydrodesulfurization. The first fraction is contacted with a gaseous oxidizing agent over an oxidation catalyst having a formula CuxZn1-xAl2O4 in a gas phase catalytic oxidation reaction zone to convert the refractory organosulfur compounds to SOx and low sulfur hydrocarbons. The by-product SOx is subsequently removed, producing a stream containing a reduced level of organosulfur compounds.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: December 9, 2014
    Assignees: Suadi Arabian Oil Company, Boreskov Institute of Catalysis
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Zinfer Ismagilov, Svetlana Yashnik, Mikhail Kerzhentsev, Valentin Parmon
  • Patent number: 8884054
    Abstract: A process and a mixture for oxidizing an alkyl-aromatic compound comprises forming a mixture comprising the alkyl-aromatic compound, a solvent, a bromine source, and a catalyst; and contacting the mixture with an oxidizing agent at oxidizing conditions to produce an oxidation product comprising at least one of an aromatic aldehyde, an aromatic alcohol, an aromatic ketone, and an aromatic carboxylic acid. The solvent comprises a carboxylic acid having from 1 to 7 carbon atoms and an ionic liquid selected from the group consisting of an imidazolium ionic liquid, a pyridinium ionic liquid, a phosphonium ionic liquid, a tetra alkyl ammonium ionic liquid, and combinations thereof. The catalyst comprises at least one of cobalt, titanium, manganese, chromium, copper, nickel, vanadium, iron, molybdenum, tin, cerium, and zirconium.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: November 11, 2014
    Assignees: UOP LLC, Boreskov Institute of Catalysis
    Inventors: Alakananda Bhattacharyya, Joseph A. Kocal, Joel T. Walenga, Nikolay Y. Adonin, Nina I. Kuznetsova, Bair S. Bal'zhinimaev
  • Patent number: 8884055
    Abstract: A solid terephthalic acid composition and a process for producing terephthalic acid from para-xylene. The process comprises forming a mixture comprising the para-xylene, a solvent, a bromine source, and a catalyst; and oxidizing the para-xylene by contacting the mixture with an oxidizing agent at oxidizing conditions to produce a solid oxidation product comprising terephthalic acid, para-toluic acid, 4-carboxybenzaldehyde. The solvent comprises a carboxylic acid having from 1 to 7 carbon atoms and an dialkyl imidazolium ionic liquid; and the catalyst comprises at least one of cobalt, titanium, manganese, chromium, copper, nickel, vanadium, iron, molybdenum, tin, cerium, and zirconium. The solid terephthalic acid composition comprises, less than about 4,000 ppm-wt 4-carboxybenzaldehyde content, and more than about 2,000 ppm-wt a para-toluic acid.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: November 11, 2014
    Assignees: UOP LLC, Boreskov Institute of Catalysis
    Inventors: Alakananda Bhattacharyya, Joseph A. Kocal, Joel T. Walenga, Nikolay Y. Adonin, Nina I. Kuznetsova, Bair S. Bal'zhinimaev
  • Patent number: 8835678
    Abstract: A solid terephthalic acid composition and a process for producing terephthalic acid from para-xylene. The process comprises forming a mixture comprising the para-xylene, a solvent, a bromine source, and a catalyst; and oxidizing the para-xylene by contacting the mixture with an oxidizing agent at oxidizing conditions to produce a solid oxidation product comprising terephthalic acid, para-toluic acid, 4-carboxybenzaldehyde. The solvent comprises a carboxylic acid having from 1 to 7 carbon atoms and an dialkyl imidazolium ionic liquid; and the catalyst comprises at least one of cobalt, titanium, manganese, chromium, copper, nickel, vanadium, iron, molybdenum, tin, cerium, and zirconium. The solid terephthalic acid composition comprises, less than about 4,000 ppm-wt 4-carboxybenzaldehyde content, and more than about 2,000 ppm-wt a para-toluic acid.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: September 16, 2014
    Assignees: UOP LLC, Boreskov Institute of Catalysis
    Inventors: Alakananda Bhattacharyya, Joseph A. Kocal, Joel T. Walenga, Nikolay Y. Adonin, Nina I. Kuznetsova, Bair S. Bal'zhinimaev
  • Patent number: 8813976
    Abstract: One exemplary embodiment can be a process for extracting one or more sulfur compounds. The process may include mixing a hydrocarbon stream containing the one or more sulfur compounds with an alkaline stream in at least one vessel. Often, the at least one vessel includes a member forming a perimeter about an interior space and having a first side and a second side forming a passageway communicating at least one of the hydrocarbon stream and the alkaline stream from an outer surface of the member to the interior space, and a frustum. The frustum can be positioned proximate to the passageway and abutting the member for facilitating contacting of the hydrocarbon stream and the alkaline stream.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: August 26, 2014
    Assignees: UOP LLC, Boreskov Institute of Catalysis
    Inventors: Lev Davydov, Daniel K. Aiken, Andrey Kuzmin
  • Publication number: 20140163293
    Abstract: One exemplary embodiment can be a process. The process can include obtaining a hydrocarbon phase having one or more hydrocarbons and an alkylation catalyst from a first vessel, swirling the hydrocarbon phase to separate the alkylation catalyst, and recycling the alkylation catalyst to an alkylation reactor.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Applicants: Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, UOP LLC
    Inventors: Daniel K. Aiken, Kurt A. Detrick, Andrey Kuzmin
  • Publication number: 20140163298
    Abstract: One exemplary embodiment can be a process for removing one or more sulfur compounds from a first liquid. The process can include passing the first liquid through a first inlet and a second liquid through a second inlet of a vessel, passing the first and second liquids through the passageway for facilitating contacting of the first and second liquids to extract the one or more sulfur compounds from the first liquid to the second liquid, and passing the first liquid through the first outlet and the second liquid through the second outlet. Often, the vessel has a plurality of vortex contactors, and a first outlet and a second outlet. The plurality of vortex contactors can include a first vortex contactor, in turn having at least one wall forming a perimeter about an interior region and including a first side and a second side forming a passageway communicating the first liquid from an exterior to the interior region, and a frustum positioned proximate to the passageway and abutting the at least one wall.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Applicants: Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, UOP LLC
    Inventors: Andrey Kuzmin, Aziz Sattar, Lev Davydov, Jonathan Andrew Tertel
  • Publication number: 20140163295
    Abstract: One exemplary embodiment can be a process for extracting one or more sulfur compounds. The process may include mixing a hydrocarbon stream containing the one or more sulfur compounds with an alkaline stream in at least one vessel. Often, the at least one vessel includes a member forming a perimeter about an interior space and having a first side and a second side forming a passageway communicating at least one of the hydrocarbon stream and the alkaline stream from an outer surface of the member to the interior space, and a frustum. The frustum can be positioned proximate to the passageway and abutting the member for facilitating contacting of the hydrocarbon stream and the alkaline stream.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Applicants: Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, UOP LLC
    Inventors: Lev Davydov, Daniel K. Aiken, Andrey Kuzmin
  • Publication number: 20140160879
    Abstract: One exemplary embodiment can be an apparatus for contacting a first liquid and a second liquid. The apparatus can include a vessel. The vessel can include a wall and a funnical frustum. The wall may form a perimeter about an interior space and include a first side and a second side forming a passageway communicating at least one of the first and second liquids to the interior space. The funnical frustum may be positioned proximate to the passageway and abut the wall for facilitating contacting of the first and second liquids.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Applicants: Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, UOP LLC
    Inventors: Andrey Kuzmin, Aziz Sattar, Lev Davydov