Abstract: A compressor wheel that can be employed in devices such as turbochargers. The compressor wheel includes an axially extending hub having an inlet end, a shaft bore extending from the inlet end and an arcuate outer surface opposed to the shaft bore. The axially extending hub is composed of a metal and has a porous region located proximate to the arcuate outer surface of the axially extending hub. The compressor wheel also includes a blade array disposed on the arcuate outer surface of the axially extending hub. The blade array has an outer surface and an inner region. The blade array comprises a plurality of circumferentially-spaced, radially and axially extending blades disposed thereon and is composed, at least in part of a polymeric material. Polymeric material located in the inner region of the blade array extends into the porous region defined in the axially extending hub.
Abstract: A glow plug is described, having a body, a glow pin which protrudes from a first end of the body, and an inner pole which protrudes from a second end of the body and is electrically connected to the glow pin. A section of the inner pole that protrudes out of the body has an embossed structure for improving the mechanical and electrical connection to a plug connector. A method for producing a glow plug is also disclosed.
Abstract: A variable turbine geometry turbocharger (100) with an adjustment ring assembly (45) having an adjustment ring (50) and a series of pivotable guide vanes (30) that are operably connected to the adjustment ring (50). A spring-biased retention clip (60) is between adjacent vane levers (36) and is attached to the adjustment ring (50). The retention clip (60) applies a force against the adjacent vane levers (36) and dampens and reduces movement of corresponding components.
Abstract: The present invention relates to a freewheel comprising an outer ring, an inner ring, and at least one clamping element which is between the outer ring and the inner ring, which is moveable from a clamping position into a release position along a race on the outer ring in a first circumferential direction relative to the outer ring, wherein the race has a clamping section, and a release section following the clamping section in the first circumferential direction on which the clamping element is supportable. A first tangent through at least one support point on the clamping section defines a first inner angle, which is greater than 180°, with a second tangent through at least one support point on the release section. In addition, the present invention relates to a freewheel arrangement for a motor vehicle comprising such a freewheel.
Type:
Grant
Filed:
August 23, 2016
Date of Patent:
August 20, 2019
Assignee:
BorgWarner Inc.
Inventors:
Florian Schneider, Matthias Gerhard Veit, Dirk Achim Schmitt
Abstract: An adjustment ring (50) is configured to facilitate vane (30) position adjustment in a variable turbine geometry turbocharger (1), and is formed of an assembly of one or more first ring portions (60) that are formed of a first material, and one or more second ring portions (61) that are formed of a second material. The first material has different material properties than the second material. In some embodiments, high-wear portions of the adjustment ring (50) can selectively and cost-effectively be formed of wear-resistant material while remaining portions are formed of a conventional material. A cost-effective method of manufacturing multi-piece adjustment rings (50) is described.
Abstract: A pneumatic actuator (312, 412) adapted for use with a turbocharger includes a diaphragm (16) having a valley (46), and a piston (314, 414) having a lip (350, 450) extending from a flange (344, 444). A portion of the lip (350, 450) curves or bends around the diaphragm (16) and possibly forms a double bend. The distal end (348, 448) of the piston (314, 414) is adapted to contact a majority of the valley (46) of the diaphragm (16) in its preloaded state. The distal end (348, 448) may have a complementary shape with a shape of the valley (46). The edge of the flange (344, 444) is always spaced away from the diaphragm (16) to prevent contact of the edge with the diaphragm (16).
Abstract: The invention relates to a method for carrying out a starting operation of a motor vehicle having a gear train that includes a dual clutch transmission with a first clutch that carries the odd-numbered gears, and a second clutch that carries the even-numbered gears, wherein the second clutch of the dual clutch transmission is used, at least in part, for preloading the gear train.
Type:
Application
Filed:
September 7, 2017
Publication date:
August 15, 2019
Applicants:
Volkswagen Aktiengesellschaft, BorgWarner Inc.
Abstract: An engine system is disclosed that includes an engine, a compound boosting system, and a variable valve. The compound boosting system includes first and second boosters, and is configured and dimensioned to compress air flowing into the engine to increase power and performance The first booster includes a first compressor positioned in a flow path of incoming air, a turbine, and a shaft interconnecting the compressor and the turbine. The second booster is electric and includes a second compressor. The valve is configured, dimensioned, and positioned such that in the open positions, when the second booster is running, air can be recirculated from adjacent an outlet of the second compressor to the inlet of the second compressor to mitigate surge in the second booster.
Abstract: A friction clutch selectively and directly couples a rotatable drive and driven members. The friction clutch includes first and second clutch members movable toward and away from each other along an axis between disengaged, partially engaged, and fully engaged positions. The first and second clutch members are independently coupled to the drive and driven members. The friction clutch further includes first and second friction materials positioned between the first and second clutch members. The first and second friction materials are each independently coupled to one of the first and second clutch members and are each independently engageable with an engagement surface of the other one of the first and second clutch members. The first friction material engages the respective engagement surface in the partially engaged position and the second friction material engages the respective engagement surface in the fully engaged position.
Abstract: A passive lubrication system, for a gear drive system of a drive system, for powering an electric vehicle, includes an oil network, an oil sump region, an oil paddle, and an oil diverter. The oil network is defined by and disposed within, at least, a fixed annular region of the gear drive system and a planetary gear system. The oil sump region is configured to provide oil for distribution about the oil network. The oil paddle is operatively coupled with the planetary gear system, configured to rotate with a component of the planetary gear system, and during rotation, configured to course oil, from the oil sump region. The oil diverter is positioned concentric with the oil paddle and radially outward of the oil paddle and configured to receive oil from an oil source, upon rotation of the oil paddle, and direct the received oil to the oil network.
Abstract: An air flow-enhancing insert (30) is configured to be inserted into the air inlet (16) of a compressor (3). The insert includes a hollow, cylindrical inner member (32) and lugs (44) protruding outward from an outer surface (36) of the inner member, each lug having an elongated cross sectional shape and including a leading edge (46), a trailing edge (48), and a long axis (50) that extends between the leading edge and trailing edge, the long axis defining a helix about the outer surface. When the insert (30) is disposed in the compressor air inlet, an air recirculation path (20) is defined between the inner member outer surface, an inner surface (17) of the air inlet, and the lugs. The air recirculation path improves air flow in the compressor, whereby compressor efficiency is improved and noise is reduced.
Abstract: A number of variations may include a method comprising controlling the combustion phase timing in the first firing cycle of a start/stop combustion engine comprising: providing a camshaft operatively connected to an extended range intake cam phaser; fully or partially retarding the extended range intake cam phaser during an engine restart to control a position of the camshaft and prevent pre-ignition; and retarding a spark timing in the first cylinder to delay the combustion phase timing to improve NVH.
Abstract: A variable turbine geometry turbine turbocharger (1) includes a vane ring assembly (29) configured to control flow of exhaust gas to a turbine wheel (12), and retainers (60, 160) that are used to secure the vane ring assembly (29) to the bearing housing (16) in a desired axial and radial position and angular orientation relative to the bearing housing (16). In some embodiments, the vane ring assembly (29) is spring biased toward an axially outward position relative to the bearing housing (16), and the retainers (60, 160) retain the vane (30) ring in the desired position against the spring bias.
Abstract: A seal (42, 82) for a shaft (22) of a turbocharger (10) to prevent liquid from leaking out of a bearing housing (16). The seal (42, 82) includes a cylindrical body extending between opposite end faces (116, 118) and has a cylindrical bore extending between the opposite end faces (116, 118) for receiving the shaft (22) therethrough. The cylindrical bore defines an inner surface (106) having at least one striation (112) extending in a helical direction about the shaft (22). Rotation of the shaft (22) relative to the seal (42, 82) causes a pumping effect on liquid present between the shaft (22) and the inner surface (106) of the seal (42, 82), thereby causing the liquid to flow back towards the bearing housing (16).
Abstract: A starter freewheel is provided. The starter freewheel has a first race, a second race, a wedging gap formed between the first and second races, at least one wedging element arranged in the wedging gap, and at least one further component. The further component is in rotary drive connection with one of the races. The component is formed by at least two sheet-metal parts connected to one another in sandwich-fashion. A freewheel arrangement having a starter freewheel of this kind is also provided.
Type:
Grant
Filed:
April 7, 2017
Date of Patent:
August 6, 2019
Assignee:
BorgWarner, Inc.
Inventors:
Jochen Boelling, Dirk Achim Schmitt, Richard Baeumier
Abstract: An exhaust gas supply arrangement (1) to a turbine wheel (11) of an exhaust gas turbocharger (2), having a flange (14) for connecting to a manifold (3) of an internal combustion engine (4), an exhaust gas supply leading from the flange (14) to the turbine wheel (11), and a partition (13) which divides the exhaust gas supply into two channels (12), wherein, in a top view of the flange (14), a coordinate system is defined, the origin thereof lying in the center of the partition (13), the y-axis thereof following the partition (13) and the x-axis thereof being perpendicular to the y-axis.
Type:
Grant
Filed:
April 8, 2016
Date of Patent:
August 6, 2019
Assignees:
BorgWarner Inc., MAN Truck & Bus AG
Inventors:
Eduard Blahovic, Fabian Rasch, Nicolas Regent
Abstract: Turbochargers operate at extremely high speed, so balance of the rotating core is of the utmost importance to turbocharger life. A special balancing washer is added to the clamping region between the compressor nut and the nose of the compressor wheel to aid in keeping the wheel, nut, and stub-shaft on the turbocharger axis and to thereby prevent introduction of core unbalance.
Abstract: A variable spring rate absorber is adjusted to provide the vibration attenuation characteristics needed to match current operating conditions. Control of a variable spring rate absorber determines the desired absorber spring rate for existing conditions based on a number of inputs and predetermined characterization tables. Once the spring rate is calculated, a predetermined map may be used to determine the absorber setting needed to achieve the desired spring rate. A sensor may be used to measure the actual state of the absorber to determine the extent to which the setting must be adjusted to achieve the desired spring rate.
Type:
Grant
Filed:
September 10, 2015
Date of Patent:
August 6, 2019
Assignee:
BorgWarner Inc.
Inventors:
Mark Buchanan, Robert Francis Keller, Xiaobing Liu
Abstract: A transfer case includes a primary output shaft, a secondary output shaft, a clutch, and a hub. The clutch includes a plurality of interleaved plates for selectively rotationally coupling the primary output shaft to the secondary output shaft. The hub rotationally couples the primary output shaft and the clutch. The hub includes an outer annular member and an inner annular member. The inner annular member is rotatable within the outer annular member for the hub to selectively release oil into the clutch.
Abstract: A variable geometry turbine turbocharger (1) includes a gear driven adjustment ring actuator mechanism (300) supported within a housing (16) via a resilient mount (70) disposed between the mechanism (300) and housing (16). The gear driven adjustment ring actuator mechanism (300) rotates an adjustment ring (350), which in turn adjusts the position of the vanes (30) of the variable geometry turbine (2). The resilient mount (70) accommodates the heat-related expansion and contraction of the gear driven adjustment ring actuator mechanism (300).
Type:
Grant
Filed:
September 25, 2014
Date of Patent:
July 30, 2019
Assignee:
BorgWarner Inc.
Inventors:
Matthew King, Jason W. Chekansky, Frederick Huscher