Patents Assigned to Boston Scientific Neuromodulation Corporation
  • Patent number: 10537741
    Abstract: A method of selecting a subset of electrodes in a stimulator device implanted in a patient for further clinical evaluation is disclosed. The method comprises measuring at least first and second measurement for each of the plurality of electrodes that are indicative of the ability of the electrode if activated to provide useful therapy to the patient in which the stimulator device is implanted A weight is then determined for each of the measurements. The weight is then applied to each electrode measurement, which measurement may be normalized, and the weighted measurements for each electrode are preferably summed to arrive at a value which itself is indicative of a particular electrode's ability to provide useful therapy to the patient. These values can then be used to determine a subset of the electrodes useful for further clinical evaluation in the patient, which improved the accuracy and speeding determining appropriate patient therapy.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: January 21, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Kerry Bradley, Ljubomir Manola, Jan Holsheimer
  • Patent number: 10537740
    Abstract: A method and external control device for providing therapy to a patient using first and second electrodes implanted within the patient is provided. A train of electrical multi-phasic pulses is generated. A first electrical current is sourced from the second electrode and at least a portion of the first electrical current is sunk to the first electrode during a stimulation phase of each multi-phasic pulse, thereby therapeutically stimulating a first tissue region adjacent the first electrode. A second electrical current is sourced from the first electrode and at least a portion of the second electrical current is sunk to the second electrode during a charge recovery phase of each multi-phasic pulse, thereby recovering at least a portion of the charge that had been injected into the patient during the stimulation phase of each multi-phasic pulse, and therapeutically stimulating a second tissue region adjacent the second electrode.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: January 21, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Kerry Bradley
  • Patent number: 10525252
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. Preferably, specifying such pulses occurs by setting a compliance monitoring instruction (e.g., a bit) in the program that defines the pulse, and the compliance monitor bit instruction may be set at a memory location defining a particular pulse phase during which the compliance voltage should be monitored. When a compliance monitor instruction issues, the active electrode node voltages are monitored and compared to desired ranges to determine whether they are high or low. Compliance logic operates on these high/low signals and processes them to decide whether to issue a compliance voltage interrupt to the microcontroller, which can then command the compliance voltage generator to increase or decrease the compliance voltage.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: January 7, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann
  • Patent number: 10525257
    Abstract: An implantable electrical stimulation lead includes a lead body; terminals disposed along the proximal portion of the lead body; electrodes disposed along the distal portion of the lead body, the electrodes including at least one segmented electrode; and an asymmetric marker disposed along the distal portion of the lead body and including a first ring and a longitudinal band extending longitudinally from the first ring. The asymmetric marker and lead body are formed of different materials that are distinguishable from each other in the radiological images to facilitate radiological determination of the rotational orientation of the lead when implanted. The marker may also include one or more of a longitudinal extension, a second ring, and non-straight longitudinal edges. The marker may also include the longitudinal band and longitudinal extension without a ring.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: January 7, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael X. Govea, G. Karl Steinke, Hemant Bokil, Peter J. Yoo
  • Patent number: 10530179
    Abstract: An integrated external controller/charger system for an implantable medical device is disclosed comprising an external controller/charger device with a Graphical User Interface (GUI) and first battery, and an external charging coil assembly coupleable to the external controller/charger device and including or associated with a second battery. The second battery is used to energize a charging coil in the external charging coil assembly, while the first battery is used to power other aspects of the system (data telemetry circuitry, control circuitry, the GUI, etc.). Because the second battery powers the relatively high-power charging function, the first battery in the external controller/charger device can be made smaller. Additionally, the second battery enables a suitable external controller device (e.g. a mobile device such as a cell phone) to provide charging functionality even if its first battery is otherwise inadequate.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: January 7, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Terril G. Lewis
  • Patent number: 10525253
    Abstract: Digital-to-analog converter (master DAC) circuitry is disclosed that is programmable to set a controlled slew rate for pulses that are otherwise defined as having sharp amplitude transitions. For example, when producing a biphasic pulse, the constant amplitude and duration of first and second pulses phases can be defined and provided to the DAC in traditional fashion. Slew rate control signals control a slew rate DAC within the master DAC, which prescribes a slew rate that will appear at sharp transitions of the defined biphasic pulses, i.e., at the beginning of the first phase, at the transition from the first to the second phase, and at the end of the second phase. The slew rate can vary with the duration or frequency of the pulses, with lower slew rates used with longer durations and/or lower frequencies, and with higher slew rates used with shorter durations and/or higher frequencies.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: January 7, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Pujitha Weerakoon
  • Patent number: 10525266
    Abstract: An example of a system may include an electrode arrangement, a neural modulation generator configured to use electrodes in the electrode arrangement to generate a modulation field, a communication module configured to receive commands, a memory configured to store modulation field parameter data, and a controller configured to control the neural modulation generator to generate the modulation field. The controller may be configured to implement a trolling routine to troll the modulation field through neural tissue positions, and implement a marking routine multiple times as the modulation field is trolled through the neural tissue positions to identify when the modulation field provides patient-perceived modulation.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: January 7, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Bradley Lawrence Hershey, Changfang Zhu, Jordi Parramon, Sridhar Kothandaraman
  • Patent number: 10518089
    Abstract: A method of providing therapy to a patient using a plurality of electrodes is provided. The electrodes are located adjacent a target neural tissue region having a first nerve fiber of a relatively small diameter and a second nerve fiber of a relatively large diameter. The method comprises sourcing electrical current from a local anode into the target neural tissue region. The method further comprises therapeutically sinking a first portion of the electrical current from the target neural tissue region into a local cathode. The method further comprises sinking a second portion of the electrical current into a cathode remote from the target neural tissue region. The ratio of the sourced electrical current over the first sunk electrical current portion has a value that allows the first nerve fiber to be recruited by the electrical current while preventing the second nerve fiber from being recruited by the electrical current.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: December 31, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Kerry Bradley, David K. L. Peterson
  • Patent number: 10518093
    Abstract: An example of a system for delivering neurostimulation pulses to a patient using a plurality of electrodes and controlling the delivery of the neurostimulation pulses by a user may include a programming control circuit and a user interface. The programming control circuit may be configured to generate a plurality of stimulation parameters controlling delivery of neurostimulation pulses according to one or more stimulation waveforms. The interface may include a display screen and an interface control circuit. The interface control circuit may be configured to define the one or more stimulation waveforms, and may include an impedance presentation module. The impedance presentation module may be configured to determine values of impedances each between two electrodes of the plurality of electrodes for all of combinations of two electrodes available from the plurality of electrodes and display the determined values of impedances on the display screen.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: December 31, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Stephen Carcieri, Michael A. Moffitt, Peter J. Yoo, Dennis Allen Vansickle, Sridhar Kothandaraman, Michael Andrew Caruso, Dean Chen
  • Patent number: 10518091
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: December 31, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Patent number: 10512778
    Abstract: A neuromodulation system configured for providing sub-threshold neuromodulation therapy to a patient. The neuromodulation system comprises a neuromodulation lead having at least one electrode configured for being implanted along a spinal cord of a patient, a plurality of electrical terminals configured for being respectively coupled to the at least one electrode, modulation output circuitry configured for delivering sub-threshold modulation energy to active ones of the at least one electrode, and control/processing circuitry configured for selecting a percentage from a plurality of percentages based on a known longitudinal location of the neuromodulation lead relative to the spinal cord, computing an amplitude value as a function of the selected percentage, and controlling the modulation output circuitry to deliver sub-threshold modulation energy to the patient at the computed amplitude value.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: December 24, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Bradley L. Hershey, Dongchul Lee
  • Patent number: 10506940
    Abstract: This document discusses, among other things, systems and methods to map an electrical waveform to a user-perceivable input. Some system examples include at least one electrode configured to sense neural activity in a patient, a mapping controller configured to receive an electrical waveform from the at least one electrode and map the sensed neural activity to a user-perceivable output based on the sensed neural activity, and a user interface operably connected to the mapping controller and configured to provide the user-perceivable output to a user.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: December 17, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Dennis Zottola
  • Patent number: 10507328
    Abstract: A neuromodulation system comprises a plurality of electrical terminals configured for being respectively coupled to a plurality of electrodes, a user interface configured for receiving input from a user that selects one of a plurality of different shapes of a modulating signal and/or selects one of a plurality of different electrical pulse parameters of an electrical pulse train, neuromodulation output circuitry configured for outputting an electrical pulse train to the plurality of electrical terminals, and pulse train modulation circuitry configured for modulating the electrical pulse train in accordance with the selected shape of the modulating signal and/or selected electrical pulse parameter of the electrical pulse train.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: December 17, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Changfang Zhu
  • Patent number: 10493276
    Abstract: An example of a system may include electrodes on at least one lead configured to be operationally positioned for use in modulating a volume of neural tissue, where the neural tissue has an activation function. The system may further include a neural modulation generator configured to deliver energy using at least some electrodes to generate a modulation field within the volume of neural tissue. The neural modulation generator may be configured to use a programmed modulation parameter set to generate the modulation field. The programmed modulation parameter set having values selected to control energy delivery using the at least some electrodes to achieve an objective function specific to the activation function of the volume of neural tissue to promote uniformity of a response to the modulation field in the volume of neural tissue along a span of the at least one lead.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: December 3, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Changfang Zhu
  • Patent number: 10493269
    Abstract: An electrical stimulation lead includes at least one lead body having a distal end portion, a proximal end portion, and a longitudinal length. The lead further includes a paddle body extending from the distal end portion of the at least one lead body, electrodes disposed along the paddle body, terminals disposed along the proximal end portion of the at least one lead body, and conductors electrically coupling the terminals to the electrodes. The lead further includes an anchoring device threadably disposed in at least a portion of the paddle body. The anchoring device has a head element and a tissue-engagement element fixed to the head element such that actuation of the head element urges the tissue-engagement element away from or toward the paddle body.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: December 3, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: William Conrad Stoffregen, Michael X. Govea, Bryan Allen Clark
  • Patent number: 10493283
    Abstract: A system and method of providing therapy to a patient using a plurality of electrodes implanted within the patient. A virtual multipole configuration is defined relative to the plurality of electrodes. The distance between each of a group of the electrodes and a virtual pole of the virtual multipole configuration is determined. A stimulation amplitude distribution is determined for the electrode group based on the determined distances, thereby emulating the virtual multipole configuration. Electrical energy is conveyed from the electrode group in accordance with the computed stimulation amplitude distribution.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: December 3, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Dongchul Lee
  • Patent number: 10485969
    Abstract: An electrical stimulation lead includes a stimulation cuff having an exterior surface and an interior surface that defines a nerve channel having a nerve channel axis. A plurality of electrodes are disposed on the interior surface of the cuff. A longitudinal opening extends through the cuff and further extends along an entire length of the cuff, wherein the opening is operable to receive a target nerve from a region outside of the cuff to within the nerve channel. A mount is disposed on the exterior surface of the cuff and radially offset from the nerve channel axis. A lead body is radially offset from the nerve channel axis and a plurality of conductors extend through the lead body, mount and cuff, with the plurality of conductors electrically coupled to the electrodes. The electrical stimulation lead may include a plurality of slots to permit tissue ingrowth.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: November 26, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael X. Govea, William George Orinski, William Conrad Stoffregen
  • Patent number: 10478628
    Abstract: An external control device, a neurostimulation system, and a method for providing therapy to a patient are provided. A plurality of stimulation parameter sets are defined, electrical stimulation energy is serially conveyed to tissue of the patient in accordance with the plurality of stimulation parameter sets, a historical log file is stored, and the plurality of stimulation parameter sets are logged in the historical log file.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: November 19, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Prakash Rao, Anita Yip, Sridhar Kothandaraman
  • Patent number: 10471260
    Abstract: An example of a system for applying neuromodulation to a patient includes a modulation output circuit and a modulation control circuit. The modulation output circuit may be configured to deliver dorsal horn stimulation. The modulation control circuit may be configured to control the delivery of the dorsal horn stimulation by executing a neuromodulation algorithm using modulation parameters. The modulation control circuit may include a response input and a parameter calibrator. The response input may be configured to receive response information indicative of one or more responses to the stimulation of the dorsal horn. The parameter calibrator may be configured to adjust one or more of the modulation parameters using the response information.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: November 12, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Bradley Lawrence Hershey, Changfang Zhu
  • Patent number: 10456585
    Abstract: Tissue stimulation systems generally include a pulse generating device for generating electrical stimulation pulses, at least one implanted electrode for delivering the electrical stimulation pulses generated by the pulse generating device, and a programmer capable of communicating with the pulse generating device. Stimulation pulses may be defined by several parameters, such as pulse width and amplitude. In methods of stimulating the tissue with the stimulation system, a user may adjust one of the parameters such as pulse width. The programmer may automatically adjust the pulse amplitude in response to the change in pulse width in order to maintain a substantially constant effect of the stimulation pulses.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: October 29, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James R. Thacker, Harold Haut, Robert Nathan, David K. L. Peterson, Kerry Bradley