Patents Assigned to Boston Scientific Neuromodulation Corporation
  • Patent number: 10888706
    Abstract: An external charging system for an Implantable Medical Device (IMD) is disclosed having a thermal diffuser proximate to the primary charging coil for distributing heat from the primary charging coil. In an example, the primary charging coil is mounted to a first side of a circuit board, and the thermal diffuser is also connected to the first side and in contact with the primary charging coil. In one example, the thermal diffuser is a plastic material, such as an acrylic pad, with a high thermal conductivity and a low electrical conductivity. The thermal diffuser may also contact temperature sensors mounted to the first side of the circuit board.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: January 12, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert J. Stinauer, Joey Chen
  • Patent number: 10888704
    Abstract: A filtering algorithm implemented by a filtering module in an implantable medical device (IMD), or in an external device for communicating with an IMD, is disclosed which reviews blocks based on a number of rules. The filtering module preferably comprises both firewall and instruction analysis modules. The instruction analysis module analyzes the instructions and associated data (if present) in each block to determine whether such blocks would compromise operation of the IPG or injure a patient if executed. Instruction rules corresponding to an instruction identified in the block are retrieved by the instruction analysis module. The instruction analysis module reviews the block per the retrieved rules, and possibly also in light of current and historical IPG therapy setting or mode data, or other received but un-executed blocks. If a block is compliant, it is executed by the IMD or transmitted to the IMD.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: January 12, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Sridhar Kothandaraman, Dennis Zottola
  • Patent number: 10881870
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils. The charging coil and one or more sense coils are preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the one or more sense coils are concentric with the charging coil and preferably formed in one or more traces of a circuit board. The magnitude of one or more voltages induced on the one or more sense coils can be measured to determine the position of the charging coil relative to the IMD, and in particular whether the charging coil is (i) centered, (ii) not centered but not misaligned, or (iii) misaligned, with respect to the IMD being charged, which three conditions sequentially comprise lower coupling between the charging coil and the IMD.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: January 5, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Thomas W. Stouffer
  • Patent number: 10881859
    Abstract: Techniques for steering of target poles formed by implantable electrodes in a stimulator device are disclosed. The steering technique modifies the relative amplitude of target poles once they are steered to an electrode array boundary. Once a target pole is steered to an electrode array boundary, further steering in the direction of that boundary results in a gradual decrease in the relative amplitude of that target pole. Eventually, continued steering in that direction will cause that target pole to disappear. Thus, in the case of a target tripole, continued steering will eventually cause the target tripole to be automatically converted into a target bipole. In another example of steering, target poles defined linearly in one direction can be split in an orthogonal direction to create a target pole configuration that is two-dimensional.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: January 5, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Natalie A. Brill, Yue Li, Jun Park, Dheerendra Kashyap
  • Patent number: 10874859
    Abstract: An example of a system to program a neuromodulator to deliver neuromodulation to a neural target using a plurality of electrodes may comprise a programming control circuit configured to determine target energy allocations for the plurality of electrodes based on at least one target pole to provide a target sub-perception modulation field, and normalize the target sub-perception modulation field, including determine a time domain scaling factor to account for at least one property of a neural target or of a neuromodulation waveform, and apply the time domain scaling factor to the target energy allocations.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: December 29, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Changfang Zhu, Que T. Doan
  • Patent number: 10874864
    Abstract: The disclosed techniques allow for externalizing errors from an implantable medical device using the device's charging coil, for receipt at an external charger or other external device. Transmission of errors in this manner is particularly useful when telemetry of error codes through a traditional telemetry coil in the implant is not possible, for example, because the error experienced is so fundamental as to preclude use of such traditional means. By externalizing the error via the charging coil, and though the use of robust error modulation circuitry in the implant designed to be generally insensitive to fundamental errors, the external charger can be consulted to understand the failure mode involved, and to take appropriate action.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: December 29, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Jordi Parramon, Christopher Britton Gould
  • Patent number: 10857354
    Abstract: An example of a system to program a neuromodulator to deliver neuromodulation to a neural target using a plurality of electrodes may comprise a programming control circuit configured to determine target energy allocations for the plurality of electrodes based on at least one target pole to provide a target sub-perception modulation field, calibrate a plurality of electrode groups in the plurality of electrodes where each of the plurality of electrode groups is in an electrode configuration and includes an electrode set of at least one electrode from the plurality of electrodes, including for each of the plurality of electrode groups receive a feedback metric to delivery of modulation energy to the neural target, and normalize the target sub-perception modulation field, including determine a space domain scaling factor using the feedback metric to account for actual electrode-tissue coupling, and apply the space domain scaling factor to the target energy allocations.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: December 8, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Changfang Zhu, Que T. Doan
  • Patent number: 10857366
    Abstract: A holder for an implantable medical device (IMD) is disclosed. The holder is configured to hold the IMD in a single, operational orientation when the holder containing the IMD is implanted in a patient. The holder is designed to prevent the IMD from moving within the patient and shifting orientation. The holder may have an opening for receiving a connecting pin, for stimulating electrodes, for example, in a mating orientation with respect to a receptacle contained within the IMD. According to some embodiments, the IMD features a metal housing that can serve as an electrode and the holder is configured with a window to allow a portion of the housing to electrically contact flesh of a patient during operation. Holders for containing a single IMD and holders for containing multiple IMDs are disclosed. Holders for containing multiple IMDs are configured to maintain alignment of the IMDs with respect to each other, for example, a parallel alignment.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: December 8, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Jillian Doubek, Samuel Tahmasian
  • Patent number: 10857351
    Abstract: A lead anchor includes a lead passageway defined along a central body and configured to receive a lead. The central body includes a twistable region that reversibly twists and stretches. First and second hubs are coupled to opposing ends of the central body. The first hub is rotatable relative to the second hub about the central body. Rotation of the first hub relative to the second hub causes twisting of the twistable region. When a lead is inserted into the lead passageway and the twistable region is twisted into a twisted configuration the central body compresses against the lead to retain the lead within the lead passageway. A locking mechanism transitions the hubs between an unlocked position, where the first hub is rotatable relative to the second hub, and a locked position, where the hubs resist rotation relative to one another.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: December 8, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Kevin Peng Wang, Jacob B. Leven
  • Patent number: 10850101
    Abstract: A neuromodulation targeting system includes a GUI that facilitates selection of one or more neuromodulation target regions. The GUI provides an interactive display representing anatomy of a patient with user-selectable portions corresponding to a plurality of predefined anatomical regions associated with distinct localized clinical effects of neuromodulation. The system further includes a targeting selector engine that is responsive to user selection of a first portion of the interactive display by configuring delivery of neuromodulation therapy to a first target region to produce a first localized clinical effect in the patient at a location corresponding to the first portion of the display, upon administration of the neuromodulation therapy to the patient.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: December 1, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Bradley Lawrence Hershey, Michael A. Moffitt
  • Patent number: 10842997
    Abstract: An example of a system may include a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to: access a patient metric of a subject; use the patient metric as an input to a machine learning algorithm, the machine learning algorithm to search a plurality of neuromodulation parameter sets and to identify a candidate neuromodulation parameter set of the plurality of neuromodulation parameter sets, the candidate neuromodulation parameter set designed to produce a non-regular waveform that varies over a time domain and a space domain; and program a neuromodulator using the candidate neuromodulation parameter set to stimulate the subject.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: November 24, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Natalie A. Brill, Jianwen Gu, Juan Gabriel Hincapie Ordonez, Changfang Zhu, Hemant Bokil, Stephen Carcieri
  • Patent number: 10842989
    Abstract: Techniques for determining the location of a physiological midline and utilizing the physiological midline location to improve a spinal cord stimulation model are disclosed. A first improvement constructs a target stimulation field along a line that is parallel with the determined physiological midline. An allocation of stimulation among the electrodes to mimic the target field is computed. A second improvement models a response of neural elements at evaluation positions that are parallel with the physiological midline based on the electric field that is generated for the computed allocation of stimulation among the electrodes. The stimulation amplitude is adjusted based on the neural element modeling to maintain stimulation intensity, and the stimulation amplitude and allocation of stimulation among the electrodes are compiled into an electrode configuration that is communicated to a neurostimulator.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: November 24, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Natalie Brill, Raul Serrano Carmona, Rosana Esteller
  • Patent number: 10835739
    Abstract: A stimulation lead anchoring system includes a lead anchor and a removable inner core. The lead anchor includes an anchor body that includes a lead lumen that extends longitudinally along the anchor body and is configured and arranged to receive a portion of an electrical stimulation lead. The removable inner core includes a core body that includes an inner lumen that extends longitudinally along the core body. The lead anchor and removable inner core are configured and arranged to expand the anchor body when a portion of the core body is inserted into the lead lumen to facilitate receiving the portion of the electrical stimulation lead into the lead lumen and inner lumen and slidably positioning the lead anchor along the lead. The anchor body is configured and arranged to engage the portion of the electrical stimulation lead upon withdrawal of the core body from the lead lumen.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: November 17, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: Neil Singh Sandhu
  • Patent number: 10828495
    Abstract: An external control device for indicating whether a stimulation parameter set for use in a neurostimulator is available on a remote control in communication with the external control device is provided. The device includes a user interface configured for displaying the stimulation parameter set and an indicator that indicates whether the stimulation parameter set is available to the patient from the remote control. The device also includes control circuitry configured for, in response to input from the user (e.g., actuating the indicator), selectively turning the indicator on or off. The indicator may be an icon, and the icon may be a graphical depiction of a remote control. The user interface may be further configured for receiving additional input from the user, and the control circuitry may be further configured for, in response to the additional input from the user, programming the remote control with the stimulation parameter set.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: November 10, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Sridhar Kothandaraman, Mun Pook Lui
  • Patent number: 10814134
    Abstract: Techniques for determining the location of a physiological midline are disclosed. A first technique evaluates the response to stimulation of spinal electrodes at peripheral electrodes on different sides of the body. In this technique, a spinal electrode's position relative to a physiological midline is determined based on a relationship between responses to its stimulation observed on different sides of the body. A second technique evaluates the response of spinal electrodes to stimulation of peripheral electrodes on different sides of the body. In this technique, a spinal electrode's position relative to a physiological midline is determined based on the different responses that it observes to stimulation on different sides of the body.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: October 27, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Raul Serrano Carmona, Bradley Hershey
  • Patent number: 10814127
    Abstract: An electrical stimulation lead for a target nerve includes a sleeve having an inner surface and an outer surface, the inner surface defines a nerve channel. A longitudinal slit extends from the outer surface to the nerve channel and along an entire length of the sleeve. A width of the slit retains the target nerve within the nerve channel when the sleeve is closed and releases the target nerve when open. A plurality of electrodes are disposed on the inner surface of the sleeve. A flexible transition element electrically couples a lead body to the plurality of electrodes. Upper and lower sections of the sleeve rotates about a common hinge line (e.g., like a clam shell) located directly opposite the longitudinal slit. The material along the common hinge line remains “elastic” when the sleeve is moved from closed to open, and vice-versa.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: October 27, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Ranjan Krishna Mukhari Nageri, Tiffany Shen
  • Patent number: 10814136
    Abstract: An electrical stimulation lead latching kit includes a connector having a housing that defines a lead lumen and a latching lumen that at least partially intersects the lead lumen; and a latching device including a latching pin, a handle, and an attaching element that attaches the latching pin to the handle. The latching pin has a longitudinal surface and is configured for insertion into the latching lumen, and the attaching element is configured to enable the latching pin to detach from the handle when the latching pin is in the latching lumen. When the latching pin is positioned in the latching lumen and a portion of an electrical stimulation lead or lead extension is positioned in the lead lumen, the longitudinal surface of the latching pin engages the electrical stimulation lead or lead extension to latch the electrical stimulation lead or lead extension to the connector.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: October 27, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Zdzislaw Bernard Malinowski, Jeffery Van Funderburk
  • Patent number: 10819713
    Abstract: An implantable medical device (IMD) includes communication circuitry that enables the IMD to communicate via a network such as the Internet. A security routine is executed on the IMD to determine whether the IMD is capable over communicating via the network. If so, the IMD requests an identifier of current firmware stored on a server that is connected to the communication network. The identifier of the current firmware is compared to an identifier of firmware that is installed on the IMD. If the installed firmware is the same as the current firmware on the server, a timer is reset, but if the installed firmware cannot be verified as matching the current firmware on the server (e.g., because the IMD is not capable of communicating via the network), the timer continues to run. When the timer expires, the IMD is prevented from communicating via the network until further action is taken.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: October 27, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Goran Marnfeldt
  • Patent number: 10814140
    Abstract: An optical stimulation system includes a lead, a control module, and a control interface. The lead includes light emitters for emitting light having wavelengths that activate light-sensitive neurons. The light-sensitive neurons generate either an excitatory response or an inhibitory response when activated depending on the wavelength of the emitted light. The control module directs the emission of light from the light emitters using a set of stimulation parameters. The control interface includes user-selectable controls to adjust the stimulation parameters. The user-selectable controls include a graphical representation of a light emitter for each light emitter. Each graphical representation includes one or more user-selectable emitter controls to indicate whether a corresponding light emitter emits light and, if so, whether the emitted light generates an excitatory response or an inhibitory response from activated light-sensitive neurons.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: October 27, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Tianhe Zhang, Rosana Esteller
  • Patent number: 10806934
    Abstract: A neuromodulation customization system includes a field definition user interface, a neuromodulation signaling engine, and a supervisor engine. The field definition user interface is to facilitate entry of a customized electrotherapy field definition, with the field definition user interface including a set of input controls for defining field shape, field intensity, and field steering parameters of the customized electrotherapy field. The neuromodulation signaling engine is to produce commands for neuromodulation output circuitry to control generation of a customized electrotherapy field via a set of electrodes based on the customized electrotherapy field definition. The supervisor engine is to assess compliance of the customized electrotherapy field to be generated with applicable predefined criteria, and to modify generation of the customized electrotherapy field in response to an assessed non-compliance with the criteria.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: October 20, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dheerendra Raghavendra Kashyap, Sarvani Grandhe, Natalie A. Brill, Bradley Lawrence Hershey, Changfang Zhu, Sridhar Kothandaraman, Dennis Zottola, Michael A. Moffitt