Patents Assigned to Boston Scientific Neuromodulation Corporation
  • Patent number: 10493283
    Abstract: A system and method of providing therapy to a patient using a plurality of electrodes implanted within the patient. A virtual multipole configuration is defined relative to the plurality of electrodes. The distance between each of a group of the electrodes and a virtual pole of the virtual multipole configuration is determined. A stimulation amplitude distribution is determined for the electrode group based on the determined distances, thereby emulating the virtual multipole configuration. Electrical energy is conveyed from the electrode group in accordance with the computed stimulation amplitude distribution.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: December 3, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Dongchul Lee
  • Patent number: 10485969
    Abstract: An electrical stimulation lead includes a stimulation cuff having an exterior surface and an interior surface that defines a nerve channel having a nerve channel axis. A plurality of electrodes are disposed on the interior surface of the cuff. A longitudinal opening extends through the cuff and further extends along an entire length of the cuff, wherein the opening is operable to receive a target nerve from a region outside of the cuff to within the nerve channel. A mount is disposed on the exterior surface of the cuff and radially offset from the nerve channel axis. A lead body is radially offset from the nerve channel axis and a plurality of conductors extend through the lead body, mount and cuff, with the plurality of conductors electrically coupled to the electrodes. The electrical stimulation lead may include a plurality of slots to permit tissue ingrowth.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: November 26, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael X. Govea, William George Orinski, William Conrad Stoffregen
  • Patent number: 10478628
    Abstract: An external control device, a neurostimulation system, and a method for providing therapy to a patient are provided. A plurality of stimulation parameter sets are defined, electrical stimulation energy is serially conveyed to tissue of the patient in accordance with the plurality of stimulation parameter sets, a historical log file is stored, and the plurality of stimulation parameter sets are logged in the historical log file.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: November 19, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Prakash Rao, Anita Yip, Sridhar Kothandaraman
  • Patent number: 10471260
    Abstract: An example of a system for applying neuromodulation to a patient includes a modulation output circuit and a modulation control circuit. The modulation output circuit may be configured to deliver dorsal horn stimulation. The modulation control circuit may be configured to control the delivery of the dorsal horn stimulation by executing a neuromodulation algorithm using modulation parameters. The modulation control circuit may include a response input and a parameter calibrator. The response input may be configured to receive response information indicative of one or more responses to the stimulation of the dorsal horn. The parameter calibrator may be configured to adjust one or more of the modulation parameters using the response information.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: November 12, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Bradley Lawrence Hershey, Changfang Zhu
  • Patent number: 10456585
    Abstract: Tissue stimulation systems generally include a pulse generating device for generating electrical stimulation pulses, at least one implanted electrode for delivering the electrical stimulation pulses generated by the pulse generating device, and a programmer capable of communicating with the pulse generating device. Stimulation pulses may be defined by several parameters, such as pulse width and amplitude. In methods of stimulating the tissue with the stimulation system, a user may adjust one of the parameters such as pulse width. The programmer may automatically adjust the pulse amplitude in response to the change in pulse width in order to maintain a substantially constant effect of the stimulation pulses.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: October 29, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James R. Thacker, Harold Haut, Robert Nathan, David K. L. Peterson, Kerry Bradley
  • Patent number: 10456584
    Abstract: Systems and methods for determining a parameter set and programming a neuromodulation system with the parameter set are disclosed. The system includes a user interface having a display screen to display simplified graphical representations (SGRs) of the lead with at least one virtual electrode (VE) that represents one or more electrodes, and control elements. The SGRs of the lead can provide longitudinal and circumferential representations of the VE, respectively representing longitudinal or circumferential position, size, shape, or spread of the VE. The control elements may include longitudinal and circumferential control elements to enable the user to respectively adjust the longitudinal or circumferential position, size, shape, or spread of the VE. The system may generate the neuromodulation parameter set using the longitudinal and circumferential representations of the VE, and program the neuromodulation system with the neuromodulation parameter set.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: October 29, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joshua Dale Howard, G. Karl Steinke, Richard Mustakos
  • Patent number: 10456583
    Abstract: A neuromodulation device is configured with a set of testing program configuration instructions including therapeutic neuromodulation field-setting parameters. The device determines a custom priming program in response to the testing program configuration instructions. The custom priming program controls the neuromodulation device to generate a priming field with specific correspondence to the therapeutic neuromodulation field to be produced by the testing program.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: October 29, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Bradley Lawrence Hershey, Changfang Zhu
  • Patent number: 10456586
    Abstract: An example of a system for programming a neurostimulator may include a storage device and a user interface. The storage device may be configured to store waveform building blocks. The user interface may include a display screen, a user input device, and an interface control circuit. The interface control circuit may include a waveform composer configured to allow for composition of one of more building blocks and composition of a pattern of neurostimulation pulses using selected one or more waveform building blocks. The waveform composer may include a library controller and waveform building block editors. The library controller may be configured to display a library management area on the screen. The displayed library management area allows a user to manage the stored waveform building blocks. The waveform building block editors may each be configured to allow the user to compose a type of the waveform building blocks.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: October 29, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: David Ernest Wechter, David Lubensky, Brian Hoffer
  • Patent number: 10449360
    Abstract: An example of a neurostimulation system may include a storage device, a programming control circuit, and a graphical user interface (GUI). The storage device may be configured to store individually definable waveforms. The programming control circuit may be configured to generate stimulation parameters controlling the delivery of the neurostimulation pulses according to a pattern. The GUI may be configured to define the pattern using one or more waveforms selected from the individually definable waveforms. The GUI may display waveform tags each selectable for access to a waveform of the individually definable waveforms, and display a waveform builder in response to selection of one of the waveform tags. The waveform builder may present a graphical representation of the accessed waveform and allow for the accessed waveform to be adjusted by editing the graphical representation of the accessed waveform on the GUI.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: October 22, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Sridhar Kothandaraman
  • Patent number: 10449371
    Abstract: An example of a system may include a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to generate a user interface to receive a therapy efficacy indication from a human subject for an neurostimulation treatment, receive user input in the user interface to select a therapy efficacy indication of the neurostimulation treatment, and identify a modification to a neurostimulation program based on the user input. For example, a therapy efficiency indication received in the user interface may indicate a perceived stimulation intensity, a perceived pain level, and a perceived location characteristic of the neurostimulation treatment. Based on the therapy efficacy indication and other user input in the graphical user interface, an updated setting to modify a parameter setting and implement a change to the neurostimulation treatment with a neurostimulation device can be provided.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: October 22, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Raul Enrique Serrano Carmona
  • Patent number: 10441781
    Abstract: This document discusses, among other things, systems and methods for programming neuromodulation therapy to treat neurological or cardiovascular diseases. A system includes an input circuit that receives a modulation magnitude representing a level of stimulation intensity, a memory that stores a plurality of gain functions associated with a plurality of modulation parameters, and a electrostimulator that may generate and deliver an electrostimulation therapy. A controller may program the electrostimulator with the plurality of modulation parameters based on the received modulation magnitude and the plurality of gain functions, and control the electrostimulator to generate electrostimulation therapy according to the plurality of modulation parameters.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: October 15, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Michael A. Moffitt
  • Patent number: 10441778
    Abstract: An implantable medical device for providing phototherapy to a patient's brain is disclosed. The device includes a housing containing a light source for providing phototherapy to a patient. A light path is attached to the housing. The implantable medical device is configured to be positioned between a patient's skull and scalp with the light path extending into the patient's brain, such that light from the light source can irradiate a target position within the patient's brain. The implantable medical device is powered and controlled by an implantable pulse generator (IPG) that may be implanted into a patient's tissue remotely from the device and connected to the device by wire leads.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: October 15, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: William G. Orinski
  • Patent number: 10441788
    Abstract: Aspects of the present disclosure are directed toward apparatuses, systems, and methods for delivering therapy to an adrenal gland of a patient. The apparatuses, systems, and methods may include a lead body that attaches to a portion of the adrenal gland of the patient; and a plurality of electrodes arranged along the lead body. In addition, one or more of the plurality of electrodes may deliver stimulation energy to modulate catecholamine release from chromaffin cells within the adrenal gland.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: October 15, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Lynne E. Swanson, William C. Stoffregen, Bryan A. Clark, Michael X. Govea, Dennis B. Werner, Natalie A. Brill, Pramodsingh H. Thakur
  • Patent number: 10441800
    Abstract: Methods and systems for selecting stimulation parameters using targeting and steering techniques are presented. For example, a method or system (via actions performed by a processor) can include receiving a name of an anatomical or physiological target or a name of a disease or disorder; receiving a clinical goal; and using at least 1) the anatomical or physiological target or disease or disorder and 2) the clinical goal, selecting a set of stimulation parameters. Another method or system (via actions performed by its processor) can include receiving a first set of stimulation parameters; receiving a command to alter the first set of stimulation parameters that does not include, or is not composed exclusively of, a numerical value for any of the stimulation parameters; and modifying the first set of stimulation parameters to create a second set of stimulation parameters based on the command.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: October 15, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: G. Karl Steinke
  • Patent number: 10420938
    Abstract: A method of operating an implantable neuromodulator coupled to an electrode array implanted adjacent tissue of a patient having a medical condition comprises conveying electrical modulation energy to tissue of the patient in accordance with a modulation parameter set, wherein conveying the electrical modulation energy to tissue of the patient in accordance with the modulation parameter set stimulates dorsal horn neuronal elements more than dorsal column neuronal elements.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: September 24, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Changfang Zhu, Michael A. Moffitt, Bradley Lawrence Hershey
  • Patent number: 10420940
    Abstract: A tissue stimulation system and computer software and method of monitoring a neurostimulation lead having a plurality of electrodes implanted within a patient (e.g., adjacent the spinal cord) is provided. Neurostimulation lead models are provided, each of which includes estimated electrical parameter data (e.g., electrical field potential data) corresponding to a predetermined position of the neurostimulation lead. Electrical energy is transmitted to or from the electrodes, and electrical parameter data (e.g., electrical field potential data) is measured in response to the transmitted electrical energy. The measured electrical parameter data is compared with the estimated electrical parameter data of each of the neurostimulation lead models, and a position of the neurostimulation lead is determined based on the comparison.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: September 24, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Michael A. Moffitt
  • Patent number: 10420950
    Abstract: An implantable pulse generator (IPG) allowing for trial stimulation in a fully implanted solution is disclosed. At the time the leads are implanted, a micro IPG having lead connection block(s) is also implanted and connected to the leads. To keep the micro IPG suitably small, it preferably does not include a battery, and is instead powered continuously via magnetic induction using a magnetic field produced by an external charger, such as a charging patch. A coil in the micro IPG picks up and rectifies this magnetic field to provide power to stimulating electronics in the IPG. Because of its small size (e.g., ?10 cm3), implantation of the micro IPG can occur at the same time the leads are implanted in the patient without inconvenience. Should stimulation therapy with the micro IPG prove effective, a larger, permanent IPG can later be implanted and connected to the implanted leads.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: September 24, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Anne Pianca, Bernard Malinowski, William G. Orinski
  • Patent number: 10413738
    Abstract: Systems and methods are disclosed in which an external device such as a consumer mobile device (e.g., smart phone) is used as an external controller to bi-directionally communicate with an Implantable Medical Device (IMD) using a dedicated patient remote control (RC) as an intermediary device to translate communications between the two. The dedicated RC contains a graphical user interface allowing for control and monitoring of the IMD even if the mobile device is not present in the system, which is useful as a back-up should the mobile device experience problems. Use of the dedicated RC as an intermediary device broadens the utility of other computing devices to operate as an external controller for an IMD even if the computing device and IMD do not have compliant communication means.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: September 17, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Habet Ter-Petrosyan, Gaurav Gupta, Sridhar Kothandaraman
  • Patent number: 10413739
    Abstract: An implantable control module for an electrical stimulation system includes a connector housing including a connector having one or more ports and connector contacts disposed within the connector; a metal electronics housing coupled to the connector housing; an electronic subassembly disposed within the metal electronics housing; and a feedthrough assembly disposed between the connector housing and the metal electronics housing and including at least one non-conductive block and conductive feedthroughs extending through the at least one non-conductive block and electrically coupling the electronic subassembly to the connector contacts. The metal electronics housing includes a metal sheet bent to form at least a portion of the first major surface and at least a portion of the second major surface. The first major surface has a length and includes a first sealed seam extending along an entirety of the length of the first major surface.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: September 17, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Jeffery Van Funderburk
  • Patent number: 10413737
    Abstract: A method for electrical stimulation of a patient includes a) implanting at least a portion of an electrical stimulation lead; b) stimulating the patient using the electrical stimulation lead at multiple test stimulation amplitudes; c) observing a response for each of the test stimulation amplitudes; d) selecting a working stimulation amplitude based on the responses from a group consisting of the test stimulation amplitudes and, optionally, a default stimulation amplitude; e) stimulating the patient using the electrical stimulation lead and the working amplitude at multiple test duty cycles; f) observing a response for each of the test duty cycles; g) selecting a working duty cycle based on the responses from a group consisting of the test duty cycles and, optionally, a default duty cycle; and h) stimulating the patient using the electrical stimulation lead, the working amplitude, and the working duty cycle.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: September 17, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Hemant Bokil, Stephen Carcieri, Ljubomir Manola