Patents Assigned to BrainLAB AG
  • Patent number: 10575828
    Abstract: The present invention relates to an ultrasound calibration device comprising a body portion having at least one echogenic fiducial; a marker portion having at least one tracking marker which can be detected by a medical tracking system; and a hook-shaped mounting portion extending from the body portion. The present invention also relates to a method for calibrating an ultrasound probe, comprising the steps of filling a container with a fluid, in particular a physiologic salt solution; placing an ultrasound calibration device in accordance with the invention into the container; comparing, with the aid of a medical navigation system, a calculated position of at least one fiducial with a determined position of the at least one fiducial which is determined using a tracked ultrasound probe.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: March 3, 2020
    Assignee: Brainlab AG
    Inventors: Edward Dunlap, Uli Mezger, Jerome Vuillemin
  • Patent number: 10561345
    Abstract: A computer implemented method for determining a center of rotation of a bone, comprising the steps of: a) acquiring image data representing a plurality of images taken by a camera while the bone is being rotated about the center of rotation, wherein the images show a marker device attached to the bone; b) forming a plurality of image pairs from the image data, wherein each image pair comprises two different images; c) determining a first relative position of the marker device relative to the camera from a first image of an image pair; d) determining a second relative position of the marker device relative to the camera from a second image of the same image pair; e) calculating a transformation of the first relative position into the second relative position; f) repeating steps c) to e) for all image pairs to obtain a plurality of transformations; and calculating the location of the center of rotation of the bone relative to the marker device from the plurality of transformations.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: February 18, 2020
    Assignee: BRAINLAB AG
    Inventors: Christian Brack, Mario Schubert
  • Patent number: 10567660
    Abstract: A medical data processing method of determining anatomical structure subset data describing a subset of a graphical representation 9 of an anatomical structure of a patient's body to be displayed simultaneously with a medical image of an anatomical body part 1, the method being constituted to be executed by a computer and comprising the following steps: a) acquiring predetermined anatomical structure representation data describing a graphical representation of the anatomical structure and its position in the patient's body; b) acquiring anatomical body part image data describing an image of an anatomical body part 1 of the patient imaged by an optical imaging apparatus 2 for display by a display apparatus 3; c) acquiring optical parameter data describing an optical parameter WD serving as a basis for displaying the anatomical body part image data; d) determining, based on the anatomical structure representation data and the anatomical body part image data and the optical parameter data, anatomical structure s
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: February 18, 2020
    Assignee: Brainlab AG
    Inventors: Valentin Elefteriu, Theodor Mueller
  • Patent number: 10543381
    Abstract: Disclosed is a method for determining a deviation of the position of an anatomical body part relative to a predetermined position defined by a radiation treatment plan. A monitoring image is taken of the anatomical body part at the instant that a predetermined control point defined in the treatment plan has been reached. The monitoring image is compared to a simulated image simulated from a planning image of the anatomical body from the perspective of a monitoring camera used to generate the monitoring image. The comparison allows for a determination of whether there is a positional deviation.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: January 28, 2020
    Assignee: Brainlab AG
    Inventors: Kajetan Berlinger, Stephan Fröhlich
  • Patent number: 10537392
    Abstract: A method for providing positional relationship data, which represent the position of a marker device relative to a bone which it is affixed to, to a medical navigation system, comprising the steps of: a) receiving bone registration data which represent locations of points on the surface of the bone; b) calculating, from the bone registration data, the current relative position between the bone and a medical instrument which bears the marker device; c) determining an offset between the current relative position and a desired relative position; d) outputting indication information which is based on the calculated offset; e) receiving bone re-registration data which represent locations of points on the surface of the bone; and f) calculating the positional relationship data from the bone re-registration data.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: January 21, 2020
    Assignee: Brainlab AG
    Inventors: Manuel Millahn, Bert Bracke, Christian Brack
  • Patent number: 10517679
    Abstract: The present disclosure sets forth a guiding tube for placing medical implants within body tissue. The guiding tube includes an elongated, dimensionally stable tubular body encompassing an inner channel adapted to receive a medical implant wherein the tubular body has at least one electromagnetic element, the element configured to exert an electromagnetic force on at least one magnetic element of the medical implant inserted into the inner channel of the guiding tube. The medical implant includes a stimulation lead having at least one directional electrode with an elongated body insertable into an inner channel enclosed by a tubular body of the guiding tube.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: December 31, 2019
    Assignee: BRAINLAB AG
    Inventor: Bálint Varkuti
  • Patent number: 10507064
    Abstract: The present invention relates to a computer-implemented medical method of determining a spatial position of a medical optical observation device (1), the method comprising executing, on a processor of a computer (2), the steps of:—acquiring position data describing, for a plurality of points in time, the spatial position of the observation device (1) within a co-ordinate system of a medical tracking system (3);—determining, based on the position data, average position data describing an average value for the position of the observation device (1) within the co-ordinate system of the medical tracking system (2);—acquiring image data describing a plurality of images acquired at the plurality of points in time via a camera (4) assigned to the observation device (1) and detecting the field of view (5) of the observation device (1);—determining, based on the image data, optical flow data describing an optical flow for the plurality of images;—determining, based on the average position data and the optical flow dat
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: December 17, 2019
    Assignee: BRAINLAB AG
    Inventor: Sven Flossmann
  • Patent number: 10463320
    Abstract: The present invention relates to positioning a patient's body part including a target relative to an imaging device that generates a radiation beam directed towards the target. Geometry data is received that describes the geometry of at least one structure located in the field of view of the imaging device. Tracking date is received that describes the spatial location and/or orientation of the at least one structure within the field of view of the imaging device. Position data is determined that incorporates the geometry date and the tracking data. The position data describes whether the location and/or orientation of the at least one structure with respect to an image trajectory is desirable. Repositioning data is determined that describes a desired location and/or orientation of the at least one structure with respect to the image trajectory. The repositioning data is output to allow repositioning of the at least one structure.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 5, 2019
    Assignee: Brainlab AG
    Inventors: Bálint Varkuti, Harald Braun
  • Patent number: 10456214
    Abstract: A data processing method performed by a computer for detecting reflections of light pulses, comprising the steps: acquiring a camera signal representing a series of camera images of a camera viewing field; detecting whether the camera signal includes one or more light mark portions within the camera viewing field possibly representing a light pulse reflection; relating the detected light mark portions in the series of camera images to a pre-defined emission pattern of the light pulses; and determining that a light mark portion is a reflected light pulse, if the light mark portion in the series of camera images matches to the pre-defined emission pattern of the light pulses.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: October 29, 2019
    Assignee: Brainlab AG
    Inventor: Johannes Manus
  • Patent number: 10449352
    Abstract: The present invention relates to a guiding tube for stimulation leads, including comprising a longitudinal, dimensionally stable tubular body enclosing an inner channel adapted to receive a stimulation lead, wherein at least one section of an otherwise electrically insulated inner surface of the tubular body has electroconductive properties. The present invention further relates to a corresponding stimulation lead placing system including such guiding tube, and to a corresponding computer program for placing a stimulation lead, utilizing such guiding tube.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: October 22, 2019
    Assignee: BRAINLAB AG
    Inventor: Dimitar Kurtev
  • Patent number: 10448905
    Abstract: The presently described method is directed to determining a way of positioning a patient before execution of a medical procedure involving irradiating the patient with ionizing treatment radiation based on comparing medical images of the patient with a pre-acquired medical image. The planning computed tomography is searched for an image of the reference structure in order to determine the position of the patient relative to a patient support device. A retroreflective marker device, having a known and advantageously fixed position relative to the base plate, is detected by a navigation system operatively coupled to a motor of the support device. Based on the detected position of the marker device, the motor of the support device is activated to drive the patient into a desired position relative to beam direction along which the treatment radiation is to be issued towards the patient to execute the medical procedure.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: October 22, 2019
    Assignee: BRAINLAB AG
    Inventors: Kajetan Berlinger, Stephan Froehlich, Eva Maria Gronbach
  • Patent number: 10449005
    Abstract: An adaptor for receiving a navigated structure, wherein the navigated structure is at least a part of a medical object which carries an object reference, and for being connected to a registration tool in order to register the navigated structure in a medical navigation system, the adaptor comprising at least two adaptor parts which, in an assembled state, form a structure receiving recess in the shape of the navigated structure and an adaptor coupling part for connecting the adaptor to the registration tool in a predetermined relative position.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: October 22, 2019
    Assignee: Brainlab AG
    Inventors: Georg Christian, Thomas Feilkas
  • Patent number: 10434332
    Abstract: A medical data processing method of determining a transformation for determining a breathing state-dependent geometry of an anatomical body part of a patient's body, the method comprising: a) acquiring planning image data describing a set of tomographic medical planning images describing each a different part of the anatomical body part in the same respiratory state called reference planning respiratory state, wherein the anatomical body part is subject to respiratory movement and wherein the planning images comprise a planning image called reference planning image describing a part of the anatomical body part which is called reference planning body part; b) acquiring breathing image data describing a set of tomographic medical breathing images of the anatomical body part, wherein the breathing images comprise a reference breathing image describing the reference planning body part in a respiratory state called reference breathing respiratory state, which is different from the reference planning respiratory st
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: October 8, 2019
    Assignee: BRAINLAB AG
    Inventor: Stefan Vilsmeier
  • Patent number: 10429182
    Abstract: Provided is a data processing method for determining rotation by a marker device of a medical tracking system about its mount. The data processing method includes acquiring a first marker device position dataset which represents a position of the marker device before a movement of the marker device. A second marker device position dataset is acquired which represents the position of the marker device after a movement of the marker device. A marker device displacement dataset is calculated, which represents the displacement of the marker device, from the first and second marker device position datasets. At least one axis of rotation of the marker device displacement dataset is calculated. A determination is made whether or not the marker device is rotated about its mount from the position of the at least one axis of rotation relative to the marker device.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: October 1, 2019
    Assignee: Brainlab AG
    Inventors: Jorg Uhde, Robert Essenreiter
  • Patent number: 10420532
    Abstract: A data processing method for calculating the contact position of a medical ultrasound transceiver on the head of a patient, comprising the steps of: a) acquiring ROI data which represent a region of interest (ROI) corresponding to at least a part of a vessel in a vascular structure; b) acquiring contact region data which represent a contact region for the ultrasound transceiver on the head, wherein the contact region corresponds to one or more acoustic windows; c) determining at least one target point in the region of interest; d) determining at least two entry points on the contact region; e) calculating a set of lines which comprises the lines between the two points of each respective possible pair consisting of one entry point and one target point; f) eliminating lines which pass through a bony structure other than the bone immediately beneath the contact region; g) calculating a score for each of the remaining lines; and h) selecting the entry point of the line with the highest score as the contact positi
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: September 24, 2019
    Assignee: Brainlab AG
    Inventors: Fritz Vollmer, Ingmar Thiemann
  • Patent number: 10413752
    Abstract: A data processing method performed by a computer for monitoring the position of a patient, comprising the steps of: acquiring a 3D image dataset of the patient; acquiring an initial real image of the patient from a medical imaging system having a known and fixed location in space, thus defining a known viewing direction of the initial real image in space, the real image being taken at a first point in time; —performing 2D/3D registration by calculating a simulated image from the 3D image dataset which matches the initial real image best, the simulated image having a viewing direction onto the 3D image dataset; storing an initial similarity measure value for the pair of the initial real image and the calculated simulated image; —acquiring a subsequent real image from the medical imaging system taken at a second point in time later than the first point in time; calculating a subsequent similarity measure value for the pair of the subsequent real image and the calculated simulated image; and outputting an indica
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: September 17, 2019
    Assignee: BRAINLAB AG
    Inventors: Kajetan Berlinger, Jorg Rehs
  • Patent number: D866578
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: November 12, 2019
    Assignee: BRAINLAB AG
    Inventor: Julian Ang
  • Patent number: D867378
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: November 19, 2019
    Assignee: BRAINLAB AG
    Inventor: Julian Ang
  • Patent number: D867379
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: November 19, 2019
    Assignee: BRAINLAB AG
    Inventor: Julian Ang
  • Patent number: D867415
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: November 19, 2019
    Assignee: Brainlab AG
    Inventors: Stefan Hofberger, Elmar Schlereth