Patents Assigned to Brandeis University
  • Patent number: 11327967
    Abstract: In some embodiments, a system is provided, comprising: memory storing instructions that, when executed, cause a processor to: submit a first database query; receive a runtime to execute the first database query using a plan selected by a query optimizer; receive runtimes to execute the first database query using a plurality of test plans; determine, based on the runtimes, a metric indicative of the effectiveness of the query optimizer; and cause the metric indicative of the effectiveness of the query optimizer to be presented to a user.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: May 10, 2022
    Assignee: Brandeis University
    Inventors: Olga Papaemmanouil, Mitch Cherniack, Zhan Li
  • Publication number: 20220135961
    Abstract: Described herein are compounds and methods for tethering proteins. For example, dimers of proteins, including SOD1 and DJ-1, are described, where the dimers are formed by the covalent bonding of a cysteine on the first monomer to a cysteine on the second monomer via a cyclic disulfide linker. The covalently attached dimers exhibit increased stabilization.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Applicant: Brandeis University
    Inventors: Jeffrey N. Agar, Joseph Salisbury
  • Patent number: 11268099
    Abstract: The invention relates to an oligonucleotide including one or more modified nucleoside bases having the structure -B-L-A wherein for each of the modified nucleosides A is independently a monosaccharide or oligosaccharide, Lisa linker molecule, and B is independently a pyrimidine or pyridine base linked to the sugar-phosphate backbone of the oligonucleotide; and wherein the oligonucleotide binds specifically to a carbohydrate-binding monoclonal antibody with an affinity of less than 100 nM. Immunogenic conjugates that include the oligonucleotide, and pharmaceutical compositions that include the oligonucleotide or the immunogenic conjugate are also disclosed. Various method of using the oligonucleotides, immunogenic conjugates, and pharmaceutical compositions are disclosed, including inducing an immune response, inhibiting viral or bacterial infection, treating a cancerous condition, and detecting a neutralizing antibody.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: March 8, 2022
    Assignee: BRANDEIS UNIVERSITY
    Inventor: Isaac J. Krauss
  • Patent number: 11266616
    Abstract: The present invention features therapeutic compositions comprising an agent that specifically binds to a PIF pocket of Aurora A kinase and an agent that specifically binds to an ATP-binding site of Aurora A kinase, and the use of the therapeutic compositions to modulate Aurora A kinase for the treatment of cancer.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: March 8, 2022
    Assignee: BRANDEIS UNIVERSITY
    Inventors: Dorothee Kern, Adelajda Zorba
  • Patent number: 11254923
    Abstract: Described herein are compounds and methods for tethering proteins. For example, dimers of proteins, including SOD1 and DJ-1, are described, where the dimers are formed by the covalent bonding of a cysteine on the first monomer to a cysteine on the second monomer via a cyclic disulfide linker. The covalently attached dimers exhibit increased stabilization.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: February 22, 2022
    Assignee: Brandeis University
    Inventors: Jeffrey N. Agar, Joseph Salisbury
  • Patent number: 11224876
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: January 18, 2022
    Assignees: Brandeis University, President and Fellows of Harvard College
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Patent number: 11198875
    Abstract: A method of modulating hygrosensing and/or thermosensing in an animal, particularly, an insect or disease vector, is provided. Also provided is a method of reducing survival, host-seeking, and/or reproductive capability of an animal, particularly an insect or disease vector. The methods involve an effective amount of an agent that modulates the activity and/or expression of a polynucleotide or polypeptide of an ionotropic receptor (Ir) selected from one or more of Ir25a, Ir93a, Ir40a, Ir68a, or Ir21a. A method of identifying an agent that modulates survival, host-seeking, and/or reproductive capability of an animal, e.g., an insect, is further provided.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: December 14, 2021
    Assignee: BRANDEIS UNIVERSITY
    Inventors: Zachary Knecht, Paul Garrity, Lina Ni
  • Patent number: 11191724
    Abstract: The present invention relates to a branched peptide that includes a first peptide chain and a second peptide chain having its C-terminal amino acid covalently linked to a sidechain of an amino acid residue of the first peptide chain, wherein the first peptide chain includes a plurality of aromatic amino acids and, optionally, an aromatic group linked to an amino terminus of the first peptide chain; and the second peptide chain includes a plurality of hydrophilic amino acids and an enzyme cleavage site. Pharmaceutical compositions containing the branched peptide and one or more therapeutic agents in an aqueous medium are disclosed, where the branched peptides form micelle structures in the aqueous medium. Methods of using the pharmaceutical composition to deliver therapeutic agents, and for treating various disease conditions are also described.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: December 7, 2021
    Assignee: BRANDEIS UNIVERSITY
    Inventors: Hongjian He, Bing Xu
  • Patent number: 11162146
    Abstract: Provided herein are reagents for improving PCR accuracy.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: November 2, 2021
    Assignee: Brandeis University
    Inventors: John Rice, Lawrence Wangh, Arthur H. Reis, Jr., Kenneth Pierce, Cristina Hartshorn, J. Aquiles Sanchez, Stephen Van Hooser, Skye Fishbein
  • Patent number: 11155576
    Abstract: Disclosed are peptides that contain up to about 35 amino acids, including a plurality of aromatic amino acid residues and either (i) an amino acid residue that is phosphorylated or sulfated, or (ii) an amino acid comprising an ester-moiety linked via peptide bond, or both (i) and (ii), wherein the peptide is capable of self-assembly to form nanofibrils in the presence of an enzyme that hydrolyzes the phosphate group, the sulfate group, or the ester-moiety. These peptides are enzymatically responsive hydrogelators, and they can be used to form pericellular hydrogels/nanofibrils upon exposure to target cells that secrete or express a surface bound ectoenzyme having hydrolase activity suitable to induce peptide gelation. These materials, and compositions containing the same, can be used for in vitro and in vivo cellular imaging, treating cancerous conditions, collecting a secretome from a cell upon which the pericellular hydrogels/nanofibrils form, and screening the collected secretome.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: October 26, 2021
    Assignee: BRANDEIS UNIVERSITY
    Inventors: Bing Xu, Junfeng Shi, Yi Kuang
  • Patent number: 11148125
    Abstract: Provided herein are cinchonium betaine catalysts and methods of promoting asymmetric butenolide isomerization reactions using the same.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: October 19, 2021
    Assignee: Brandeis University
    Inventors: Xiao Zhou, Yongwei Wu, Li Deng
  • Patent number: 11148140
    Abstract: A microfluidic device comprising at least one isolation unit and at least one capillary valve. The at least one isolation unit has at least one chamber. The at least one chamber configured to receive at least two different aqueous solutions. The at least one capillary valve is configured to allow for the at least two different aqueous solutions to be introduced into the at least one chamber without mixing prior to entering the at least one chamber based at least in part on pressure levels of the at least two different aqueous solutions.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: October 19, 2021
    Assignee: BRANDEIS UNIVERSITY
    Inventor: Seth Fraden
  • Patent number: 11111508
    Abstract: The invention features Cas9 fusion polypeptides. In one embodiment of the invention, Cas9 is fused to a SNAP tag that enhances Cas9's gene repair function.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: September 7, 2021
    Assignee: BRANDEIS UNIVERSITY
    Inventor: Nelson Lau
  • Patent number: 11104741
    Abstract: The present invention features an antibody mimetic, or an antigen binding fragment thereof, that specifically binds to an allosteric site of Aurora A kinase, therapeutic compositions comprising this antibody mimetic, and the use of the monobody to modulate Aurora A kinase for the treatment of cancer.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: August 31, 2021
    Assignee: BRANDEIS UNIVERSITY
    Inventors: Dorothee Kern, Adelajda Zorba
  • Patent number: 11058093
    Abstract: Systems and methods for monitoring and controlling activities of Drosophila organisms are provided. In one aspect, a method includes acquiring, using a first activity detector, imaging data tracking movements of the Drosophila organisms, and acquiring, using a second activity detector, bioluminescence data corresponding to a neural activity of the Drosophila organisms. The method also includes correlating, using the acquired data, a behavioral activity and neural activity of the Drosophila organisms, and determining, using the correlation, an activity profile for the Drosophila organisms. The method further includes providing, based on the activity profile, a stimulation to the Drosophila organisms to control at least one of the behavior activity or the neural activity over a time period extendible to a nominal life cycle of the Drosophila organisms.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: July 13, 2021
    Assignee: BRANDEIS UNIVERSITY
    Inventors: Fang Guo, Hyung-jae Jung, Michael Rosbash
  • Patent number: 11055304
    Abstract: The present disclosure includes systems and methods for performing a plurality of base statistical analysis on a dataset to yield multiple, different base statistics with respect to a first predetermined number of features. The dataset and the base statistics can be used to find a transformation that determines significant features while controlling a false discovery rate (FDR) to be below a target FDR threshold (?), wherein a second predetermined number of features are assumed to be independent from each other. Using the transformation, a composite index can be generated that represents a synthesis of the base statistics and a report can be generated that indicates at least the relative presence of the significant features in the dataset using the composite index.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: July 6, 2021
    Assignee: BRANDEIS UNIVERSITY
    Inventors: Pengyu Hong, Yuanzhe Bei
  • Patent number: 11040108
    Abstract: This invention relates to a conjugate of formula (I): (A-Z1-)n-Q-Z2-D (I), wherein Z1, Z2, Q, A, D, and n are as described herein. This invention also relates to a pharmaceutical composition including a pharmaceutically acceptable carrier and a conjugate of formula (I). This invention also relates to a method making a conjugate of formula (I), and the use of the conjugate for treating cancerous conditions, modulating cell membrane microheterogeneity, stimulating an immunoresponse, and forming a network on or near the inner or outer surface of target cells.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: June 22, 2021
    Assignee: BRANDEIS UNIVERSITY
    Inventors: Huaimin Wang, Bing Xu
  • Patent number: 10960397
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: March 30, 2021
    Assignees: President and Fellows of Harvard College, Brandeis University
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Patent number: 10942095
    Abstract: Microfluidic devices and methods for investigating crystallization and/or for controlling a reaction or a phase transition are disclosed. In one embodiment, the microfluidic device includes a reservoir layer; a membrane disposed on the reservoir layer; a wetting control layer disposed on the membrane; and a storage layer disposed on the wetting control layer, wherein the wetting control layer and the storage layer define a microfluidic channel comprising an upstream portion, a downstream portion, a first fluid path in communication with the upstream and the downstream portions, and a storage well positioned within the first fluid path, wherein the wetting control layer includes a fluid passageway in communication with the storage well and the membrane, and wherein the wetting control layer wets a first fluid introduced into the microfluidic channel, the first fluid comprising a hydrophilic, lipophilic, fluorophilic or gas phase as the continuous phase in the microfluidic channel.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: March 9, 2021
    Assignee: Brandeis University
    Inventors: Seth Fraden, Michael Heymann, Markus Ludwig
  • Patent number: D947030
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: March 29, 2022
    Assignee: BRANDEIS UNIVERSITY
    Inventor: Daniel Perlman