Patents Assigned to Brigham and Women's Hospital
  • Publication number: 20220023233
    Abstract: The present disclosure relates to compositions and methods for the diagnosis and treatment or prevention of proteinopathies, particularly MUC1-associated kidney disease (ADTKD-MUC1 or MKD), Retinitis Pigmentosa (e.g., due to rhodopsin mutations), autosomal dominant tubulo-interstitial kidney disease due to UMOD mutation(s) (ADTKD-UMOD), and other forms of toxic proteinopathies resulting from mutant protein accumulation in the ER or other secretory pathway compartments and/or vesicles, among others. The disclosure also identifies and provides TMED9-binding agents as capable of treating or preventing proteinopathies of the secretory pathway, and further provides methods for identifying additional TMED9-binding agents.
    Type: Application
    Filed: October 6, 2021
    Publication date: January 27, 2022
    Applicants: THE BROAD INSTITUTE, INC., THE BRIGHAM & WOMEN'S HOSPITAL, INC., DANA-FARBER CANCER INSTITUTE, INC., Instituto Carlos Slim de la Salud, A.C.
    Inventors: Anna Greka, Moran Dvela-Levitt, Maria Alimova, Eric Lander, Todd R. Golub, Florence Wagner, Brian Chamberlain, Valeria Padovano, Joseph Growney
  • Publication number: 20220016138
    Abstract: The compositions and methods provided herein are related, in part, to the discovery of cholic acid 7-sulfate as a treatment for diabetes. Provided herein is a method for treating a metabolic disorder (e.g., diabetes, obesity), or an inflammatory disease (e.g., Crohn's disease, inflammatory bowel disease, ulcerative colitis, pancreatitis, hepatitis, appendicitis, gastritis, diverticulitis, celiac disease, food intolerance, enteritis, ulcer, gastroesophageal reflux disease (GERD), psoriatic arthritis, psoriasis, and rheumatoid arthritis) in a subject in need thereof comprising administering to a subject a compound of Formulae (I)-(XVII).
    Type: Application
    Filed: December 4, 2019
    Publication date: January 20, 2022
    Applicants: President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.
    Inventors: Abigail Sloan Devlin, Snehal N. Chaudhari, Eric Garland Sheu, David A. Harris, Jinbo Lee
  • Publication number: 20220017938
    Abstract: In one aspect, the invention features a method for identifying a drug-modulated polypeptide substrate of cereblon (CRBN). In another aspect, the invention features a method of identifying a polypeptide target of a modulator of CRBN. In yet another aspect, the invention provides methods of monitoring or characterizing the sensitivity of a subject to a modulator of CRBN.
    Type: Application
    Filed: October 7, 2021
    Publication date: January 20, 2022
    Applicants: THE BROAD INSTITUTE, INC., PRESIDENT AND FELLOWS OF HARVARD COLLEGE, THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: TARJEI MIKKELSEN, BENJAMIN LEVINE EBERT, QUINLAN SIEVERS
  • Publication number: 20220009984
    Abstract: The present invention is directed stromal cell derived factor-1 peptides that have been mutated to make them resistant to digestion by the proteases dipeptidyl peptidase IV (DPPIV) and matrix metalloproteinase-2 (MMP-2) but which maintain the ability of native SDF-I to attract T cells. The mutants may be attached to membranes formed by self-assembling peptides and then implanted at sites of tissue damage to help promote repair.
    Type: Application
    Filed: September 14, 2020
    Publication date: January 13, 2022
    Applicant: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Richard T. LEE, Vincent SEGERS
  • Publication number: 20220008701
    Abstract: Systems and methods related to reconfigurable medical devices are described. In some embodiments, a reconfigurable medical device may include a central core and a plurality of arms. The arms may be rotatably coupled to the central core such that the plurality of arms may rotate outwards away from the central core to selectively reconfigure the reconfigurable device between a retracted configuration and an expanded configuration. In an initial state, the arms may be biased outwards away from the central core into the expanded configuration. When the reconfigurable device is exposed to a temperature greater than a threshold temperature, the arms may be biased towards the central core into the retracted configuration. In some embodiments, a reconfigurable medical device may include therapeutic compound-loaded needles coupled to distal portions of the arms.
    Type: Application
    Filed: November 15, 2019
    Publication date: January 13, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Ester Caffarel Salvador, Sahab Babaee, Simo Pajovic
  • Publication number: 20220010282
    Abstract: 3D cell cultures and devices for 3D cell culture, and methods of use thereof are provided. In some embodiments, the 3D cell culture comprise pancreatic ? cells and can be generated in multi-well plates, allowing for high throughput assays on the cell culture.
    Type: Application
    Filed: June 16, 2021
    Publication date: January 13, 2022
    Applicants: THE BROAD INSTITUTE, INC., THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Jeffrey Karp, Amit Choudhary, Kisuk Yang, Miseon Lee, Peter Jones
  • Publication number: 20220001159
    Abstract: Actuating components and related methods are generally disclosed. Certain embodiments comprise an actuating component associated with a plurality of microneedles (e.g., for administering a therapeutic agent to a subject). In some embodiments, the actuating component may be administered to a subject such that the plurality of microneedles are deployed at a location internal to the subject (e.g., in the gastrointestinal tract). The actuating component may be contained within, in some embodiments, a capsule (e.g., for oral administration to a subject). In some embodiments, the actuating component has a pre-deployment configuration in which the plurality of microneedles have a first orientation and a deployed configuration in which the plurality of microneedles have a second orientation, different than the first orientation.
    Type: Application
    Filed: May 17, 2019
    Publication date: January 6, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Daniel Minahan, Alex G. Abramson, Ester Caffarel Salvador, Vance Soares
  • Publication number: 20220002680
    Abstract: Malignant tumors that are resistant to conventional therapies represent significant therapeutic challenges. An embodiment of the present invention provides a regulatable fusogenic oncolytic herpes simplex virus-1 that is more effective at selective killing target cells, such as tumor cells. In various embodiments presented herein, the oncolytic virus described herein is suitable for treatment of solid tumors, as well as other cancers.
    Type: Application
    Filed: November 15, 2019
    Publication date: January 6, 2022
    Applicant: The Brigham and Women's Hospital, Inc.
    Inventor: Feng YAO
  • Patent number: 11214839
    Abstract: Provided herein are methods and kits for determining the presence or absence of certain microRNA biomarkers in a blood sample of a female patient. The microRNA biomarkers are associated with ovarian cancer. Also provided are methods for screening a female subject for the presence or absence of certain microRNA biomarkers, as well as methods for treating a female subject having an ovarian cancer.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: January 4, 2022
    Assignees: DANA-FARBER CANCER INSTITUTE, INC., THE BRIGHAM AND WOMEN'S HOSPITAL, INC., MEDICAL UNIVERSITY OF LODZ
    Inventors: Dipanjan Chowdhury, Kevin M. Elias, Wojciech Fendler, Konrad Stawiski
  • Patent number: 11214833
    Abstract: The invention relates generally to the use of microvesicle RNA signatures for diagnosis, predicting, and/or to monitor treatment efficacy, including patients who are candidates for renal transplant and/or who have received a renal transplant.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: January 4, 2022
    Assignees: Exosome Diagnostics, Inc., The Brigham and Women's Hospital
    Inventors: Johan Karl Olov Skog, Jamil Azzi
  • Patent number: 11213366
    Abstract: There is provided a medical support device for holding and positioning a needle. This device is particularly useful for positioning needles in a less invasive puncture treatment. This device comprises two rotational elements and at least one needle guide attached to a rotational element and. The needle guide guides the direction of insertion of a needle-like instrument and includes a guide portion that guides a needle or other needle-like instrument where the puncture point of the needle in a first position is different from the puncture point when the needle guide guides the needle in a second position.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: January 4, 2022
    Assignees: Canon U.S.A., Inc., The Brigham and Women's Hospital, Inc.
    Inventors: Kazufumi Onuma, Takahisa Kato, Nobuhiko Hata, Kemal Tuncali, Brian Ninni, Peter Tia
  • Publication number: 20210401798
    Abstract: The invention relates to (S)-6-((1 R,2E,4E,8E,10S)-11-(4-fluorophenoxy)-1,10-dihydroxyundeca-2,4,8-trien-6-yn-1-yl)-1,4-dioxan-2-one (compound (1)), which is a lactone-containing analog of lipoxin A4 (LXA4). In particular, the invention features pharmaceutical compositions including compound (1) and the use of compound (1) for the treatment of a disorder (e.g., a fibrotic disorder or an inflammatory disorder, such as an autoimmune disorder) in a subject in need thereof.
    Type: Application
    Filed: October 23, 2019
    Publication date: December 30, 2021
    Applicants: The Brigham and Women's Hospital, Inc., Corbus Pharmaceuticals, Inc., Corbus Pharmaceuticals, Inc.
    Inventors: Nan CHIANG, Sheldon N. CRANE, Thomas JENNEQUIN, Valdas JURKAUSKAS, Clifton D. LEIGH, Kristos Adrian MOSHOS, Charles N. Serhan, Mark A. Tepper, Yuhua George Zhang
  • Patent number: 11207272
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: December 28, 2021
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, David Dellal, Robert S. Langer
  • Patent number: 11207278
    Abstract: The present disclosure relates to compositions and methods for the diagnosis and treatment or prevention of proteinopathies, particularly MUC1-associated kidney disease (ADTKD-MUC1 or MKD), Retinitis Pigmentosa (e.g., due to rhodopsin mutations), autosomal dominant tubulo-interstitial kidney disease due to UMOD mutation(s) (ADTKD-UMOD), and other forms of toxic proteinopathies resulting from mutant protein accumulation in the ER or other secretory pathway compartments and/or vesicles, among others. The disclosure also identifies and provides TMED9-binding agents as capable of treating or preventing proteinopathies of the secretory pathway, and further provides methods for identifying additional TMED9-binding agents.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: December 28, 2021
    Assignees: The Broad Institute, Inc., Dana-Farber Cancer Institute, Inc., The Brigham and Women's Hospital, Inc.
    Inventors: Anna Greka, Moran Dvela-Levitt, Maria Alimova, Eric Lander, Todd R. Golub, Florence Wagner, Brian Chamberlain, Valeria Padovano, Joseph Growney
  • Patent number: 11207393
    Abstract: The present invention is based, in part, on the identification of methods of modulating PD-1 expression and/or activity in regulatory T cells (Tregs) to thereby regulate effector immune responses in effector T cells (Teffs).
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: December 28, 2021
    Assignees: President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc., Dana-Farber Cancer Institute, Inc.
    Inventors: Arlene H. Sharpe, Gordon J. Freeman, Loise M. Francisco, Peter T. Sage, Sun J. Lee, Scott B. Lovitch, Vikram R. Juneja, Catherine L. Tan
  • Patent number: 11202652
    Abstract: Exemplary methods, apparatus, and systems are disclosed for automated registration and motion compensation of patient-mounted needle guide medical devices using fiducial markers, and processing algorithms where a re-registration step is provided. These methods, apparati, and systems adaptively compensate for the displacement of the medical device and/or target location due to the patient movement or internal organ motion.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: December 21, 2021
    Assignees: Canon U.S.A., Inc., The Brigham and Women's Hospital Inc.
    Inventors: Junichi Tokuda, Laurent Chauvin, Kemal Tuncali, Nobuhiko Hata, Santosh Ganesan, Barret Daniels, Brian Ninni, Franklin King
  • Patent number: 11202903
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In certain embodiments, the self-righting article a tissue-interfacing components. In some embodiments, each tissue-interfacing component may comprise an electrically-conductive portion configured for electrical communication with tissue and an insulative portion configured to not be in electrical communication with tissue.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: December 21, 2021
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Alex G. Abramson, David Dellal
  • Patent number: 11186825
    Abstract: The present invention provides markers, marker signatures and molecular targets that correlate with dysfunction of immune cells and are advantageously independent of the immune cell activation status. The present markers, marker signatures and molecular targets provide for new ways to evaluate and modulate immune responses. Specifically, POU2AF1 modulation is provided for use as a marker, marker signature and molecular target. Therapeutic methods are also provided to treat a patient in need thereof who would benefit from an increased immune response.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: November 30, 2021
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Aviv Regev, Ana Carrizosa Anderson, Le Cong, Vijay K. Kuchroo, Meromit Singer, Chao Wang
  • Publication number: 20210363228
    Abstract: The present invention relates to peptides, particularly human monoclonal antibodies, that bind specifically to poly-N-acetyl glucosamine (PNAG), such as Staphylococcal PNAG, in acetylated, partially acetylated and/or fully deacetylated form. The invention further provides methods for using these peptides in the diagnosis, prophylaxis and therapy of infections by bacteria that express PNAG such as but not limited to Staphylococci and E. coli. Some antibodies of the invention enhance opsonophagocytic killing and in vivo protection against bacteria that express PNAG such as but not limited to Staphylococci and E. coli. Compositions of these peptides, including pharmaceutical compositions, are also provided, as are functionally equivalent variants of such peptides.
    Type: Application
    Filed: December 22, 2020
    Publication date: November 25, 2021
    Applicants: The Brigham and Women's Hospital, Inc., Beth Israel Deaconess Medical Center, Inc.
    Inventors: Gerald B. Pier, Casie Anne Kelly-Quintos, Lisa Cavacini, Marshall R. Posner
  • Publication number: 20210361919
    Abstract: Articles for rapid release of components including, for example, quick release capsules, are generally provided. Advantageously, in some embodiments, the articles described herein may be configured to prevent fluid from contacting a component h contained therein (e.g., tissue interfacing component) or payload contained therein until a desired time, e.g., the time at which the component is configured to release from the article to a location internal to a subject (e.g., localize to a tissue wall in the subject). In some embodiments, the article comprises a first compartment and a second compartment not in fluid communication with the first compartment. In some embodiments, the first compartment and second compartment are fluidically isolated. For example, in some cases, the first compartment comprises a mechanism for releasing a component contained within the article and the second compartment comprises the component.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 25, 2021
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., Novo Nordisk A/S
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Alex G. Abramson, David Dellal, Christoph Winfried Johannes Steiger, Niclas Roxhed, Ester Caffarel Salvador, Vance Soares, Daniel Minahan, Morten Revsgaard Frederiksen