Patents Assigned to BRUKER BIOSPIN
  • Patent number: 7746071
    Abstract: In a method for the acquisition of data relating to multi-dimensional NMR spectra (designated as the SHARC protocol—SHaped, ARrayed aCquisition Protocol), crossed signals are shifted at will in frequency space using selective pulses and frequency dependent folding.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: June 29, 2010
    Assignee: Bruker BioSpin GmbH
    Inventor: Peyman Sakhaii
  • Patent number: 7728707
    Abstract: A magnet arrangement with a magnet coil system (M) with two coil systems (C, D) that are each arranged in a container (B1, B2) positioned around the z axis and that are axially mechanically separated by a split (G), wherein each coil system (C, D) comprises a first (C1, D1) and a second coil section system (C2, D2), wherein the first coil section systems (C1, D1) are exposed to attractive magnetic forces showing toward the split (G) (KC1, KD1) and the second coil section systems (C2, D2), to repulsive magnetic forces showing away from the split (G) (KC2, KD2), and containing in the split (G) at least one mechanical structure that withstands compressive loads (E1, E2) and that supports a part of the attractive magnetic forces (KC1, KD1), is characterized in that, in the split (G) within the dimensions of the containers (B1, B2), a mechanical structure (H1) is provided that mechanically withstands tensile loads in the z direction, supports a part of the repulsive magnetic forces in the axial direction (KC2, KD2
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: June 1, 2010
    Assignee: Bruker Biospin AG
    Inventors: Raffaele Gilardi, Stefan Schneider, Robert Schauwecker, Pierre-Alain Bovier
  • Patent number: 7723988
    Abstract: A magnetic resonance (MR) detection configuration comprising at least one RF resonant circuit with an inductance, a preamplifier module and an RF receiver, wherein a reactive transformation circuit is connected between a high-impedance point of the inductance and a low-impedance connecting point of the RF resonant circuit, which acts as an impedance transformer and wherein the low-impedance connecting point is connected to the preamplifier module via an RF line having a characteristic impedance, is characterized in that at least one passive damping impedance is provided in the preamplifier module downstream of the RF line, wherein the passive damping impedance can be connected to the resonant circuit by a switching means during a damping and/or transmitting process, and wherein the respective amount of the complex reflection factor of passive damping impedance relative to the characteristic impedance of the RF line exceeds a value of 0.5.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: May 25, 2010
    Assignee: Bruker Biospin AG
    Inventors: Arthur Schwilch, Daniel Marek, Nicolas Freytag
  • Patent number: 7723986
    Abstract: An installation for investigating objects (10a) using magnetic resonance comprising a safety room (1) which has gastight walls (1a-c) and having a magnet system (9) for producing a homogenous magnetic field in an investigational volume (13), the magnet system (9) comprising a gastight outer shell (19) which is penetrated in a shell region (29) by feed-throughs (39a-d) into the interior of the magnet system (9), is characterized in that the magnet system (9) is arranged in the safety room (1), and one of the gastight walls (1a-c) is penetrated in an access region (1e), wherein a gastight connecting element (14) is present between the access region (1e) and the shell region (29) which, at its ends, is connected in a gastight manner to the gastight wall and the gastight outer shell (19) respectively, so that access from outside the safety room (1) is available to the shell region (29) and the feed-throughs there (39a-d), that access being sealed in a gastight manner with respect to the safety room (1).
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: May 25, 2010
    Assignee: Bruker Biospin MRI GmbH
    Inventor: Bernd Gewiese
  • Patent number: 7718135
    Abstract: A sample holder for fixing and transporting a sample vial (1) within an NMR configuration comprising an outer shell (4) and a continuous hollow space disposed inside the outer shell (4) and extending along its axis for receiving the sample vial, is characterized in that a clamping device that can be switched on and off and a switching element (6) are provided inside the hollow space, wherein, in the activated state, the clamping device fixes a sample vial (1) that is introduced into the sample holder, the switching element (6) can be operated from the outside, and the clamping device can be deactivated using the switching element (6) such that, in the deactivated state, the sample vial (1) inserted into- or removed from the sample holder is not fixed. Such a sample holder may be used to realize an automatic supply device for changing NMR sample vials which has a very compact structure and can be mounted using little space.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: May 18, 2010
    Assignee: Bruker Biospin AG
    Inventors: Kurt Himmelsbach, Franco Sestito
  • Publication number: 20100109666
    Abstract: A nuclear magnetic resonance (NMR) magic angle spinning (MAS) probe head (1; 61) for measuring a measuring substance in an MAS rotor (21a-21c), comprises a bottom box (3) and a tube (2) mounted to the bottom box (3) and projecting from the bottom box, wherein, in the area of the end (5) of the tube (2) facing away from the bottom box (3), an MAS stator (7; 62) is disposed within the tube (2) for receiving an MAS rotor (21a-21c), and with a pneumatic sample changing system for supplying and discharging an MAS rotor (21a-21c) to/from the MAS stator (7; 62). A transport conduit (10) is provided for pneumatically transferring an MAS rotor (21a-21c) within the transport conduit (10), wherein the transport conduit (10) extends in the inside of the tube (2) from the bottom box (3) to the MAS stator (7; 62). The probe head realizes fast change between different MAS rotors and facilitates RF shielding and keeping of defined extreme temperature conditions.
    Type: Application
    Filed: October 13, 2009
    Publication date: May 6, 2010
    Applicant: Bruker BioSpin GmbH
    Inventors: Martin Armbruster, Benno Knott
  • Publication number: 20100085775
    Abstract: A high voltage step-up power transformer includes at least one module which defines a lower voltage primary side and a higher voltage secondary side and which includes at least one primary winding and at least one secondary winding, wound concentrically around a ferromagnetic core body, the primary winding(s) being situated outwardly, and at least one shielding and/or insulating surface structure being arranged between the primary and secondary windings. The transformer (1) is characterized in that the outer primary winding (2) or winding parts is (are) made of at least one insulated high voltage cable and in that the at least one conductive intermediate surface structure (5) and/or the core body (4) are set at a referential potential which is a fraction of the output voltage or potential difference on the secondary side.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 8, 2010
    Applicant: BRUKER BIOSPIN SA
    Inventor: Alfred Niess
  • Patent number: 7689264
    Abstract: A method for generating MR (magnetic resonance) images of a moving object with a repeating motion pattern at comparable motion states, wherein for at least one motion state, a set of MR data which is completely encoded for producing an MR image is provided from a plurality of successive individual MR measurements. The method is characterized in that at least one contiguous region of successive data points is used as indicator within the individual MR measurement, wherein this contiguous region is identically repeated for all individual MR measurements within the respective MR measuring sequence relative to irradiated RF (radio frequency) pulses and switched gradients. This provides reliable allocation of the recorded MR data with the associated motion states, wherein completely encoded sets of MR data can be determined within an optimum time.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: March 30, 2010
    Assignee: Bruker Biospin MRI GmbH
    Inventor: Arno Nauerth
  • Patent number: 7667476
    Abstract: Measuring module for the measurement of an object (6), having a measuring chamber (4), with a contact element (5a, 5b), wherein the object to be measured (6) is thermally connected to a first contact surface (9a) of the contact element (5a, 5b), and having a cold head (1b, 2b, 2c) that can be thermally connected to a second contact surface (9b) of the contact element (5a, 5b), wherein the contact element (5a, 5b) consists of material with high thermal conductivity, characterized in that the cryo-refrigerator (1a, 2a) together with the cold head is housed in a refrigerating chamber (3) that is physically separated from the measuring chamber (4) and can be evacuated separately from the latter, and the contact element (5a, 5b) is thermally insulated from the outside wall of the measuring module, is part of a separating wall between the measuring chamber (4) and the refrigerating chamber (3), and makes a local thermal connection between the measuring chamber (4) and the refrigerating chamber (3), and with a conta
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: February 23, 2010
    Assignee: Bruker Biospin AG
    Inventors: Olivier Zogmal, Daniel Guy Baumann, Frank Lehnert
  • Patent number: 7661295
    Abstract: A method for coupling a gas chromatograph (21) to an NMR spectrometer, wherein the carrier gas present at the outlet of a separating column (23) of the gas chromatograph (21) including a sample contained in the carrier gas is supplied via a heated transfer line (1) to a collecting device (2) for the sample contained in the carrier gas, is characterized in that the carrier gas containing the sample is introduced into a collecting liquid (8) in the collecting device (2), and the sample is collected in the collecting liquid (8), wherein the collecting liquid (8) is suitable as an NMR solvent for the sample. The sample loss of the coupling method is reduced.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: February 16, 2010
    Assignee: Bruker Biospin GmbH
    Inventor: Martin Hofmann
  • Patent number: 7656158
    Abstract: A sample vessel (80) made of material with magnetic susceptibility ?2, for containing a sample substance (87) with magnetic susceptibility ?3??2 to be analyzed in a nuclear magnetic resonance (NMR) spectrometer, has an inner interface G2 toward the sample substance and an outer interface G1 toward the environment (85) that exhibits magnetic susceptibility ?1. The shape of the interface toward the sample substance and the interface toward the environment are coordinated to match the discontinuities in susceptibility at the interfaces in such a way that on introduction of the sample tube filled with sample substance into the previously homogeneous magnetic field of an NMR spectrometer, the magnetic field inside the sample substance remains largely homogeneous.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: February 2, 2010
    Assignee: Bruker Biospin AG
    Inventors: Michael Fey, Thomas Speck
  • Publication number: 20100005814
    Abstract: A method for cooling a cryostat configuration (1, 1?) during transport, wherein the cryostat configuration (1) comprises a superconducting magnet coil (2) in a helium tank (8) containing liquid helium (9), which is surrounded by at least one radiation shield (10), wherein the cooling inside the cryostat configuration (1, 1?) in stationary operation is performed entirely without liquid nitrogen by means of a refrigerator, characterized in that during transport, the refrigerator is switched off and instead, liquid nitrogen (6) is conducted from an external nitrogen vessel (4) via a supply tube (7) from the nitrogen vessel (4) to the cryostat configuration (1, 1?) and brought into thermal contact with the radiation shield (10) by means of a thermal contact element (11) in the cryostat configuration (1, 1?). In this way, the consumption of liquid helium during transport can be greatly reduced and the possible transport time of a charged superconducting magnet configuration increased.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 14, 2010
    Applicant: Bruker BioSpin GmbH
    Inventor: Marco Strobel
  • Patent number: 7642783
    Abstract: A nuclear magnetic resonance(=NMR) probehead, comprising N basic elements (10a, 10b, 10c), where N?2, wherein each basic element (10a, 10b, 10c) comprises a measurement sample (11) and a resonator system (12a, 12b, 12c), and wherein the N resonator systems (12a, 12b, 12c) of the N basic elements (10a, 10b, 10c) are coupled to each other, is characterized in that a coupling network for the N resonator systems (12a, 12b, 12c) is provided, with which the totality of the N resonator systems (12a, 12b, 12c) can be operated in one identical, coupled mode during transmission and reception, wherein the coupling network comprises a shared receiver circuit for the totality of the N resonator systems (12a, 12b, 12c). With the inventive NMR probehead, a better signal-to-noise ratio can be achieved in the case of lossy samples than with probeheads according to the prior art.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: January 5, 2010
    Assignee: Bruker Biospin AG
    Inventor: Nicolas Freytag
  • Patent number: 7626386
    Abstract: A nuclear magnetic resonance (NMR) method for singlet-state exchange NMR-spectroscopy comprises steps of excitation of single-quantum in-phase coherences, generation of single-quantum anti-phase coherences, excitation of zero-quantum coherences ZQx and/or longitudinal two-spin order 2IzSz (=“ZZ order”) using a ?/4 pulse, reversal of the sign of the zero-quantum coherences ZQx under the effect of the difference of the chemical shifts of the examined spins, transformation of the zero-quantum coherences ZQx and/or longitudinal two-spin ZZ order into singlet-state populations by means of RF irradiation during a mixing period ?m, reconversion of the singlet-state populations remaining at the end of the mixing period ?m into zero-quantum coherences ZQx and/or ZZ order, reversal of the sign of the zero-quantum coherences ZQx under the effect of the difference of the chemical shifts of the examined spins, and reconversion of zero-quantum coherences ZQx and/or ZZ order into single-quantum anti-phase coherences.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: December 1, 2009
    Assignees: Ecole Polytechnique Fédérale de Lausanne (EPFL), Bruker BioSpin AG
    Inventors: Geoffrey Bodenhausen, Paul Vasos, Riddhiman Sarkar
  • Publication number: 20090273345
    Abstract: A method for determining the spatial distribution of magnetic resonance (MR) signals from an imaging region within MSEM regions of a local gradient system, wherein, in a preparatory step, a spatial encoding scheme is defined; in an execution step, nuclear spins are repeatedly excited with RF pulses, and thereafter spatially encoded according to the spatial encoding scheme, in at least one dimension by means of the local gradient system, and MR signals are acquired, from which the spatial distribution is calculated, visualized and/or stored, characterized in that in the preparatory step, a phase encoding scheme with I phase encoding steps is defined, for each phase encoding step according to the phase encoding scheme, an excitation pattern of the transverse magnetization is defined and RF pulses to be irradiated to implement this pattern are calculated, wherein the same phase is defined at all spatial locations of the imaging region within a MSEM region and, in the execution step, according to the spatial enc
    Type: Application
    Filed: April 28, 2009
    Publication date: November 5, 2009
    Applicant: Bruker BioSpin MRI GmbH
    Inventor: Wolfgang Ruhm
  • Patent number: 7612563
    Abstract: A flow-through microfluidic NMR-chip comprising a substrate (5) which is planar in an yz-plane with a sample chamber (2) within the substrate (5), the sample chamber (2) being elongated and having walls which run parallel to the z-direction, the substrate (5) having a thickness in x-direction of a Cartesian xyz-coordinate system between 100 ?m and 2 mm, and at least one planar receiving and/or transmission coil (1, 1?) with conductor sections (11) the coil (1, 1?) being arranged at least on one planar surface of the substrate (5), wherein the extension of the sample chamber (2) along the z-direction exceeds the extension of the coil (1) along the z-direction is characterized in that the extension of the coil (1, 1?) along the z-direction is larger than its extension along the y-direction. The inventive NMR-chip facilitated NMR-spectroscopic measurements with improved resolution, sensitivity as well as B1 homogeneity.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: November 3, 2009
    Assignee: Bruker Biospin AG
    Inventors: Charles Massin, Michael Fey
  • Patent number: 7608462
    Abstract: A method for spectrometric investigation of a plurality of samples dissolved in a solvent comprises: (a) guiding a first solvent with a sample through an SPE cartridge for concentrating the sample in the cartridge; (b) positioning the cartridge in a carrier for a plurality of cartridges; (c) repeating steps (a) and (b) for a desired number of samples; (d) drying the concentrated samples through removal of the residual first solvent, in particular, dehydration or evaporation; (e) dissolving each sample in a second solvent, transferring these dissolved samples from the cartridges to a spectrometer and acquiring a spectrum of each sample. All samples are dried together in step (d) subsequent to steps (b) and (c) while the cartridges with samples are positioned in the carrier. The drying process is thereby considerably accelerated in a straightforward technical manner.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: October 27, 2009
    Assignee: Bruker Biospin GmbH
    Inventors: Martin Hofmann, Werner Maas
  • Publication number: 20090261246
    Abstract: A superconducting magnet configuration (4; 14) for generating a homogeneous magnetic field B0 in an examination volume (4b), has an interior radial superconducting main field coil (1) which is disposed rotationally symmetrically about an axis (z-axis) and an oppositely driven coaxial radially exterior superconducting shielding coil (2) is characterized in that the magnet configuration (4; 14) consists of the main field coil (1), the shielding coil (2), and a ferromagnetic field formation device (3; 18), wherein the ferromagnetic field formation device (3; 18) is located at the radially inside of the main field coil (1), the main field coil (1) consisting of an unstructured solenoid coil or of several radially nested unstructured solenoid coils (15, 16) which are driven in the same direction, the axial extent Labs of the shielding coil (2) being smaller than the axial extent Lhaupt of the main field coil (1), wherein the axial magnetic field profile (5) generated by the main field coil (1) and the shielding co
    Type: Application
    Filed: April 16, 2009
    Publication date: October 22, 2009
    Applicant: Bruker BioSpin GmbH
    Inventors: Gerald Neuberth, Michael Westphal
  • Patent number: 7605589
    Abstract: A method for homogenizing a static magnetic field with a magnetic field distribution B0(r) for nuclear magnetic resonance spectroscopy by adjusting the currents Ci through the shim coils, thus creating spatial field distributions Ci·Si(r), where r stands for one, two, or three of the spatial dimensions x, y, and z, and said magnetic field distribution B0(r) has only a field component along z, in a working volume of a magnetic resonance apparatus with one or more radio frequency (=RF) coils (5) for inducing RF pulses and receiving RF signals within a working volume, said RF coils having a spatial sensitivity distribution of magnitudes B1k(r), and with shim coils (6) for homogenizing the magnetic field within the working volume, said shim coils (6) being characterized by their magnetic field distributions per unit current Si(r) and having components only along z, includes the following steps: (a) Mapping the magnetic field distribution B0(r) of the main magnetic field, (b) calculating a simulated spectrum IS
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: October 20, 2009
    Assignee: Bruker BioSpin AG
    Inventors: Markus Weiger, Michael Fey, Thomas Speck
  • Patent number: 7606019
    Abstract: A magnet coil system (2) which is at least partially superconducting at a cryogenic temperature, comprising at least two partial coils (3, 4, 5) which are connected in series and are each bridged by a superconducting switch (6, 7, 8), such that the partial coils form independent electric loops (11, 12, 13) when the superconducting switches (6, 7, 8) are closed, is characterized in that two electric loops (11, 12) have a common section and a flux pump (10) is provided which is circuited in the common section (14) of the electric loops (11, 12) of two partial coils (3, 4), wherein the sum of the currents of the two partial coils (3, 4) flows through the flux pump (10) in the operating state. In this fashion, the drifts of two independent electric loops can be compensated for with a few devices.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: October 20, 2009
    Assignee: Bruker Biospin AG
    Inventors: Rolf Spreiter, Patrik Vonlanthen