Abstract: A method of operating and process for fabricating an electron source. A conductive rod is covered by an insulating layer, by dipping the rod in an insulation solution, for example. The rod is then covered by a field emitter material to form a layered conductive rod. The rod may also be covered by a second insulating material. Next, the materials are removed from the end of the rod and the insulating layers are recessed with respect to the field emitter layer so that a gap is present between the field emitter layer and the rod. The layered rod may be operated as an electron source within a vacuum tube by applying a positive bias to the rod with respect to the field emitter material and applying a higher positive bias to an anode opposite the rod in the tube. Electrons will accelerate to the charged anode and generate soft X-rays.
Abstract: The invention provides a chemical-mechanical polishing composition comprising a cationic abrasive, a cationic polymer, a carboxylic acid, and water. The invention further provides a method of chemically-mechanically polishing a substrate with the aforementioned polishing composition. The polishing composition exhibits selectivity for removal of silicon nitride over removal of silicon oxide.
Abstract: The invention provides a method of chemically-mechanically polishing a substrate having at least one feature defined thereon, wherein the feature has at least one dimension with a size W, with a chemical-mechanical polishing composition. The polishing composition comprises particles of an abrasive wherein the particles have a mean particle diameter DM wherein the mean particle diameter of the particles satisfies the equation: DM>W. The invention further provides a method of preparing the chemical-mechanical polishing composition.
Type:
Grant
Filed:
November 13, 2006
Date of Patent:
November 23, 2010
Assignee:
Cabot Microelectronics Corporation
Inventors:
Paul M. Feeney, Sriram Anjur, Jeffrey M. Dysard
Abstract: The inventive chemical-mechanical polishing system comprises a polishing component, a liquid carrier, an oxidizing agent, and a halogen anion. The inventive method comprises chemically-mechanically polishing a substrate with the polishing system.
Abstract: The invention provides a composition for chemical-mechanical polishing. The composition comprises an abrasive, a first metal rate polishing modifier agent, a second metal rate polishing modifier agent, and a liquid carrier. In one embodiment, the first metal rate polishing modifier agent has a standard reduction potential less than 0.34 V relative to a standard hydrogen electrode, and the second metal rate polishing modifier agent has a standard reduction potential greater than 0.34 V relative to a standard hydrogen electrode. In other embodiments, the first and second metal rate polishing modifier agents are different oxidizing agents.
Type:
Grant
Filed:
February 9, 2007
Date of Patent:
September 28, 2010
Assignee:
Cabot Microelectronics Corporation
Inventors:
Francesco De Rege Thesauro, Steven Grumbine, Phillip Carter, Shoutian Li, Jian Zhang, David Schroeder, Ming-Shih Tsai
Abstract: The invention provides a method of chemically-mechanically polishing a substrate. A substrate is contacted with a polishing pad and a polishing composition comprising an abrasive consisting of (A) particles consisting of titanium dioxide having a rutile structure and (B) particles consisting of titanium dioxide having an anatase structure, wherein an x-ray diffraction pattern of the particles has a ratio of X/Y of about 0.5 or more, wherein X is an intensity of a peak in an x-ray diffraction curve representing a d-spacing of about 3.24 ?, and Y is an intensity of a peak in an x-ray diffraction curve representing a d-spacing of about 3.51 ?, and water. The polishing component is moved relative to the substrate, and at least a portion of the substrate is abraded to polish the substrate.
Abstract: The invention provides a chemical-mechanical polishing system for polishing a substrate comprising (a) a polishing component selected from an abrasive, a polishing pad, or both an abrasive and a polishing pad, (b) an aqueous carrier, and (c) the halogen adduct resulting from the reaction of (1) an oxidizing agent selected from the group consisting of iodine, bromine, and a combination thereof, and (2) a carbon acid having a pKa of about 3 to about 14, wherein the halogen adduct is present in a concentration of about 0.01 mM or more in the aqueous carrier. The invention also provides a method of polishing a substrate comprising (i) providing the aforementioned chemical-mechanical polishing system, (ii) contacting the substrate with the polishing system, and (iii) abrading at least a portion of the surface of the substrate with the polishing system to polish the substrate.
Type:
Grant
Filed:
February 9, 2007
Date of Patent:
August 17, 2010
Assignee:
Cabot Microelectronics Corporation
Inventors:
Steven Grumbine, Francesco De Rege Thesauro
Abstract: The invention provides a chemical-mechanical polishing composition comprising alpha alumina, fumed alumina, silica, an oxidizing agent that oxidizes nickel-phosphorous, oxalic acid, optionally, tartaric acid, optionally, a nonionic surfactant, optionally, a biocide, and water. The invention also provides a method of chemically-mechanically polishing a substrate comprising contacting a substrate with a polishing pad and the chemical-mechanical polishing composition, moving the polishing pad and the polishing composition relative to the substrate, and abrading at least a portion of the substrate to polish the substrate.
Abstract: The invention provides a chemical-mechanical polishing composition comprising: (a) silica particles, (b) about 5×10?3 to about 10 millimoles per kilogram of at least one alkaline earth metal selected from the group consisting of calcium, strontium, barium, and mixtures thereof, based on the total weight of the polishing composition, (c) about 0.1 to about 15 wt. % of an oxidizing agent, and (d) a liquid carrier comprising water. The invention also provides a polishing composition, which optionally comprises an oxidizing agent, comprising about 5×10?3 to about 10 millimoles per kilogram of at least one alkaline earth metal selected from the group consisting of calcium, strontium, and mixtures thereof. The invention further provides methods for polishing a substrate using the aforementioned polishing compositions.
Type:
Grant
Filed:
September 10, 2004
Date of Patent:
July 13, 2010
Assignee:
Cabot Microelectronics Corporation
Inventors:
David J. Schroeder, Kevin J. Moeggenborg
Abstract: The present invention provides a chemical-mechanical polishing (CMP) composition comprising an amino compound, a radical-forming oxidizing agent, a radical trapping agent capable of inhibiting radical-induced oxidation of the amino compound, and an aqueous carrier therefore. The radical trapping agent is a hydroxyl-substituted polyunsaturated cyclic compound, a nitrogenous compound, or a combination thereof. Optionally, the composition comprises a metal oxide abrasive (e.g., silica, alumina, titania, ceria, zirconia, or a combination of two or more of the foregoing abrasives). The invention further provides a method of chemically-mechanically polishing a substrate with the CMP compositions, as well as a method of enhancing the shelf-life of CMP compositions containing an amine and a radical-forming oxidizing agent, in which a radical trapping agent is added to the CMP composition.
Type:
Grant
Filed:
March 20, 2006
Date of Patent:
June 8, 2010
Assignee:
Cabot Microelectronics Corporation
Inventors:
Steven K. Grumbine, Renjie Zhou, Zhan Chen, Phillip W. Carter
Abstract: This invention provides a method for polishing pad comprising a polymeric material having pores and a component that is disposed within the pores.
Abstract: The invention provides a method for producing a conductive film that generates an electric current via field emission of electrons, which method comprises incorporating an electrically conductive material into a thermoplastic polymer. The invention also provides a conductive film and a method for generating an electric current via field emission of electrons.
Abstract: The invention is directed to a chemical-mechanical polishing composition comprising (a) an abrasive consisting essentially of aggregated silica, (b) an acid, and (c) a liquid carrier, wherein the polishing composition has a pH of about 5 or less. The invention is also directed to a method of polishing a substrate comprising a dielectric layer using the polishing composition.
Type:
Grant
Filed:
May 10, 2002
Date of Patent:
March 16, 2010
Assignee:
Cabot Microelectronics Corporation
Inventors:
Phillip Carter, Gregory H Bogush, Farhana Khan, Timothy P Johns, Robert Vacassy
Abstract: The inventive method comprises chemically-mechanically polishing a substrate comprising at least one layer of silicon carbide with a polishing composition comprising a liquid carrier, an abrasive, and an oxidizing agent.
Type:
Grant
Filed:
September 5, 2006
Date of Patent:
March 16, 2010
Assignee:
Cabot Microelectronics Corporation
Inventors:
Mukesh Desai, Kevin Moeggenborg, Phillip Carter
Abstract: The present invention provides a method for polishing an aluminum nitride substrate. The method comprises abrading a surface of the aluminum nitride substrate with a basic, aqueous polishing composition, which comprises an abrasive (e.g., colloidal silica), an oxidizing agent (e.g., hydrogen peroxide), and an aqueous carrier. The methods of the invention provide for substantially improved polishing rates relative to conventional methods that do not utilize an oxidizing agent in the polishing slurry.
Abstract: The invention is directed to a method of chemically-mechanically polishing a a surface of a substrate, comprising contacting a surface of a substrate comprising nickel-phosphorous with a chemical-mechanical polishing composition comprising wet-process silica, an agent that oxidizes nickel-phosphorous, and an aminopolycarboxylic acid, wherein the polishing composition has a pH of about 1 to about 5, and abrading at least a portion of the nickel-phosphorous to polish the substrate.
Abstract: The invention provides a chemical-mechanical polishing composition comprising wet-process silica, a stabilizer compound, a potassium salt, a secondary amine compound, and water. The invention further provides a method of polishing a substrate with the polishing composition.
Type:
Application
Filed:
May 23, 2008
Publication date:
November 26, 2009
Applicant:
Cabot Microelectronics Corporation
Inventors:
Michael White, Jeffrey Gilliland, Lamon Jones, Alicia Walters
Abstract: The invention provides compositions and methods for planarizing or polishing a substrate. The composition comprises an abrasive consisting of alumina particles optionally treated with a polymer, an ?-hydroxycarboxylic acid, an oxidizing agent that oxidizes at least one metal, polyacrylic acid, optionally, a calcium-containing compound, optionally, a biocide, optionally, a pH adjusting agent, and water. The method uses the composition to chemically-mechanically polish a substrate.
Type:
Application
Filed:
March 21, 2008
Publication date:
September 24, 2009
Applicant:
Cabot Microelectronics Corporation
Inventors:
Vlasta Brusic, Christopher Thompson, Jeffrey Dysard
Abstract: An improved electron bombardment device includes a first tubular member for containing a target material and a second tubular member surrounding the first tubular member, leaving a space between the first and second tubular members. In an embodiment of the invention, the second tubular member is an electron emitting material, and the bombardment device includes a voltage application means for accelerating emitted electrons from the second tubular member towards the first tubular member. In a further embodiment of the invention, the second tubular member comprises a thermionic electron emitting material. In an alternative embodiment, the second tubular member comprises a field electron emitting material.
Type:
Application
Filed:
April 9, 2009
Publication date:
September 17, 2009
Applicant:
Cabot Microelectronics Corporation
Inventors:
Stanley D. Lesiak, Heinz H. Busta, Bruce M. Zwicker
Abstract: The inventive chemical-mechanical polishing system comprises a polishing component, a liquid carrier, and a polyether amine. The inventive method comprises chemically-mechanically polishing a substrate with the aforementioned polishing system.
Type:
Grant
Filed:
April 27, 2006
Date of Patent:
September 8, 2009
Assignee:
Cabot Microelectronics Corporation
Inventors:
Jeffrey M. Dysard, Paul M. Feeney, Sriram P. Anjur, Timothy P. Johns, Yun-Biao Xin, Li Wang