Patents Assigned to Caliper Life Sciences
  • Patent number: 7351377
    Abstract: Methods and devices that include the use of venting elements for enhancing bonded substrate yields and regulating temperature. Venting elements are generally fabricated proximal to functionalized regions in substrate surfaces to prevent bond voids that form during bonding processes from affecting the functionalized regions. Venting elements generally include venting channels or networks of channels and/or venting cavities.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: April 1, 2008
    Assignee: Caliper Life Sciences, Inc.
    Inventors: David Chazan, Luc J. Bousse, Carlton Brooks, Derek Louch, Michael R. Spaid
  • Patent number: 7344865
    Abstract: Nucleotides and nucleotide analogs are used in various sequencing by incorporation/sequencing by synthesis methods. Nucleotide analogs comprising 3?-blocking groups are used to provide reversible chain-termination for sequencing by synthesis. Typical blocking groups include phosphate groups and carbamate groups. Fluorescent nucleotides are used to perform sequencing by synthesis with detection by incorporation of the fluorescently labeled nucleotide, optionally followed by photobleaching and intercalating dyes are used to detect addition of a non-labeled nucleotide in sequencing by synthesis with detection by intercalation. Microfluidic devices, including particle arrays, are used in the sequencing methods.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: March 18, 2008
    Assignee: Caliper Life Sciences, Inc.
    Inventors: J. Wallace Parce, Theo T. Nikiforov, Tammy Burd Mehta, Anne R. Kopf-Sill, Andrea W. Chow, Michael R. Knapp
  • Patent number: 7343248
    Abstract: Techniques for controlling analytical instruments are provided. A sequence of steps can be utilized to specify wells of a microfluidic device, mobility to be applied to fluid in the wells, and the duration to apply the mobility. For example, fluids can be sequentially run past down a main channel to a detection zone of the microfluidic device in order to analyze the fluids. In order to increase the efficiency of the analysis, fluids can be processed in parallel by running one fluid down the main channel while another fluid is loaded to the main channel.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: March 11, 2008
    Assignee: Caliper Life Sciences
    Inventors: J. Wallace Parce, Morten J. Jensen
  • Publication number: 20080009075
    Abstract: Microfluidic devices and systems for affecting the serial to parallel conversion of materials introduced into the device or system. Material or materials to be converted from a serial orientation, e.g., a single channel, into a parallel orientation, e.g., multiple channels, are introduced into an open chamber or field in which containing flows of materials maintain the cohesiveness of the sample material plugs serially introduced into the open chamber. The sample material or materials are then redirected in the chamber toward and into a plurality of parallel channels that also communicate with the chamber.
    Type: Application
    Filed: April 20, 2007
    Publication date: January 10, 2008
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Andreas Manz, Luc Bousse
  • Patent number: 7316801
    Abstract: The invention provides improved systems, devices, and methods for analyzing a large number of sample compounds contained in standard multi-well microtiter plates or other array structures. The multi-well plates travel along a conveyor system to a test station having a microfluidic device. At the test station, each plate is removed from the conveyor and the wells of the multi-well plate are sequentially aligned with an input port of the microfluidic device. After at least a portion of each sample has been input into the microfluidic channel system, the plate is returned to the conveyor system. Pre and/or post testing stations may be disposed along the conveyor system, and the use of an X-Y-Z robotic arm and novel plate support bracket allows each of the samples in the wells to be input into the microfluidic network through a probe affixed to a microfluidic chip.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: January 8, 2008
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Joseph E. Kercso, Steven A. Sundberg, Jeffrey A. Wolk, Andrew W. Toth, Calvin Y. H. Chow, J. Wallace Parce
  • Publication number: 20080000774
    Abstract: A method of carrying out a chemical reaction on a microfluidic device in which a first reactant at a first concentration is delivered into a reaction channel; within the reaction channel the concentration of the first reactant is changed from the first concentration to a second concentration; and while at the second concentration the first reactant is exposed to a second reactant.
    Type: Application
    Filed: April 16, 2007
    Publication date: January 3, 2008
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Charles Park, Irina Kazakova
  • Publication number: 20080004816
    Abstract: Techniques for displaying chromatographic data using a graphical user interface are provided. Chromatographic separation data that represent a series of measurements for multiple samples at a detection location over time can be displayed on a display device as a series of bands, the bands being arranged to resemble output from an electrophoresis gel. Additionally, the chromatographic separation data may be displayed in the form of measured intensity at the detection location versus time.
    Type: Application
    Filed: June 7, 2007
    Publication date: January 3, 2008
    Applicant: Caliper Life Sciences, Inc.
    Inventor: Steven Gallagher
  • Patent number: 7303727
    Abstract: Methods and apparatus for delivering fluidic materials to sample destinations, including mass spectrometers for analysis are provided. In preferred embodiments, sample aliquots are electrosprayed from tapered spray tips of capillary elements into the orifices of mass spectrometric inlet systems. In certain embodiments, fluidic samples are orthogonally sprayed from capillary elements or other fluid conduits, whereas in other embodiments samples are sprayed after devices are rotated or otherwise translocated from sample sources to sample destinations. In still other embodiments, samples are sprayed from flexed or deflected capillary elements at selected sample destinations.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: December 4, 2007
    Assignee: Caliper Life Sciences, Inc
    Inventors: Robert S. Dubrow, Michael Greenstein, Luc J. Bousse, Khushroo Gandhi
  • Patent number: 7303862
    Abstract: Microfabrication methods and devices in which microscale structural elements are provided in an intermediate polymer layer between two planar substrates. Preferred aspects utilize photoimagable or ablatable polymer layers as the intermediate polymer layer.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: December 4, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventor: Chazan David
  • Publication number: 20070246076
    Abstract: Methods for reducing surface adsorption of biological materials to the walls of microfluidic conduits in microscale devices are provided. In an example of the methods, one or more colloidal-size particles, such as colloidal silica particles, are flowed in a fluid within the microfluidic conduit in the presence of one or more adherent biological materials (such as one or more proteins, cells, carbohydrates, nucleic acids, lipids and the like) to adsorb to the materials and prevent them from binding to the capillary walls of the microfluidic conduit. Other adsorption inhibition agents such as detergents and nonaqueous solvents can be used alone or in combination with colloidal particles to reduce surface adsorption in microfluidic conduits.
    Type: Application
    Filed: July 2, 2007
    Publication date: October 25, 2007
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Dean Hafeman, Aileen Zhou
  • Patent number: 7285411
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays. In particular, the devices and methods of the invention are useful in screening large numbers of different compounds for their effects on a variety of chemical, and preferably, biochemical systems.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: October 23, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventors: John Wallace Parce, Anne R. Kopf-Sill, Luc J. Bousse
  • Patent number: 7264702
    Abstract: Methods for determining total analyte concentrations and amounts, especially in combination with analyte separations are provided. Microfluidic devices are used to separate analyte mixtures and detect the individual analytes. Signal areas are summed for each individual analyte to quantitate the total analyte amount. Separate measurements of the total analyte sample are also used to determine total analyte concentration.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: September 4, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventor: Calvin Y. H. Chow
  • Publication number: 20070202015
    Abstract: A method to achieve controlled conductivity in microfluidic devices, and a device formed thereby. The method comprises forming a microchannel or a well in an insulating material, and ion implanting at least one region of the insulating material at or adjacent the microchannel or well to increase conductivity of the region.
    Type: Application
    Filed: February 15, 2007
    Publication date: August 30, 2007
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Luc Bousse, Seth Stern, Richard McReynolds
  • Publication number: 20070200058
    Abstract: Described herein is a phantom device that simplifies usage, testing, and development of light imaging systems. The phantom device includes a body and a fluorescent light source internal to the body. The body comprises an optical material designed to at least partially resemble the optical behavior of mammalian tissue. The phantom device has many uses. One use of the phantom device permits testing of tomography software in the imaging system, such as software configured for 3D reconstruction of the fluorescent light source. Another use tests spectral unmixing software in the imaging system. The phantom device also allows a user to compare trans- and epi-fluorescent illumination imaging results.
    Type: Application
    Filed: March 6, 2007
    Publication date: August 30, 2007
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Bradley Rice, David Nilson, Tamara Troy
  • Publication number: 20070196238
    Abstract: The invention provides a system and method for dissolution testing. The system includes multiple dissolution vessels and a dose carrier positioned above the dissolution vessels. The dose carrier holds multiple removable carousels that receive individual doses for dissolution tested. Carousels that receive tablets or sinkers typically have a first configuration, while carousels that receive baskets typically have a second configuration. The two different configurations of carousels are interchangeable on the same dose ring. The system further includes a drive head positioned above the dose carrier, the drive head having a basket arbor and a mixing paddle removably and interchangeably attached. A pipettor integral with the system transfers sample aliquots having volumes in the range of 50 ?l to 1 ml from the dissolution vessels to wells of an external receptacle.
    Type: Application
    Filed: December 28, 2006
    Publication date: August 23, 2007
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Colin Kennedy, Syed Husain, Dale von Behren, Rick Bernal
  • Publication number: 20070184463
    Abstract: A method of purifying a biological component found in a biological sample by extracting the biological component from the biological sample. The method is performed using a microfluidic device having at least one well for receiving the biological sample and at least one channel for introducing and removing fluids. A plurality of magnetic beads having a factor with an affinity for the biological component is introduced to the well together with a suitable biological sample. The biological sample is manipulated to release the biological component in proximity to the magnetic beads which are then segregated within the well while removing the biological sample. An elution solution for the biological component is introduced to the well and the elution solution together with the biological component are withdrawn therefrom.
    Type: Application
    Filed: October 2, 2006
    Publication date: August 9, 2007
    Applicants: Caliper Life Sciences, Inc., Canon U.S. Life Sciences, Inc.
    Inventors: Josh Molho, Pamela Foreman
  • Patent number: 7252928
    Abstract: Methods for reducing surface adsorption of biological materials to the walls of microfluidic conduits in microscale devices are provided. In an example of the methods, one or more colloidal-size particles, such as colloidal silica particles, are flowed in a fluid within the microfluidic conduit in the presence of one or more adherent biological materials (such as one or more proteins, cells, carbohydrates, nucleic acids, lipids and the like) to adsorb to the materials and prevent them from binding to the capillary walls of the microfluidic conduit. Other adsorption inhibition agents such as detergents and nonaqueous solvents can be used alone or in combination with colloidal particles to reduce surface adsorption in microfluidic conduits.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: August 7, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Dean G. Hafeman, Aileen Zhou
  • Publication number: 20070177147
    Abstract: The present invention provides a microfluidic system for electrophoretic analysis of materials in the fields of chemistry, biochemistry, biotechnology, molecular biology and numerous other fields. Light absorbance signals are received by a photodetector from periodically spaced regions along a channel in the microfluidic system. The signals received by the photodetector are modulated by the movement of species bands through the channel under electrophoretic forces. By Fourier analysis, the velocity of each species band is determined, and identification of the species is made based on its electrophoretic mobility in the channel.
    Type: Application
    Filed: March 26, 2007
    Publication date: August 2, 2007
    Applicant: Caliper Life Sciences, Inc.
    Inventor: J. Parce
  • Publication number: 20070157973
    Abstract: Improved microfluidic devices, systems, and methods allow selective transportation of fluids within microfluidic channels of a microfluidic network by applying, controlling, and varying pressures at a plurality of reservoirs. Modeling the microfluidic network as a series of nodes connected together by channel segments and determining the flow resistance characteristics of the channel segments may allow calculation of fluid flows through the channel segments resulting from a given pressure configuration at the reservoirs. To effect a desired flow within a particular channel or series of channels, reservoir pressures may be identified using the network model. Viscometers or other flow sensors may measure flow characteristics within the channels, and the measured flow characteristics can be used to calculate pressures to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems can optionally be used in conjunction with electrokinetic or other fluid transport mechanisms.
    Type: Application
    Filed: February 3, 2007
    Publication date: July 12, 2007
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Ring-Ling Chien, J. Parce, Andrea Chow, Anne Kopf-Sill
  • Publication number: 20070161071
    Abstract: Methods, systems, kits for carrying out a wide variety of different assays that comprise providing a first reagent mixture which comprises a first reagent having a fluorescent label. A second reagent is introduced into the first reagent mixture to produce a second reagent mixture, where the second reagent reacts with the first reagent to produce a fluorescently labeled product having a substantially different charge than the first reagent. A polyion is introduced into at least one of the first and second reagent mixtures, and the fluorescent polarization in the second reagent mixture relative to the first reagent mixture is determined, this fluorescent polarization being indicative of the rate or extent of the reaction.
    Type: Application
    Filed: November 10, 2006
    Publication date: July 12, 2007
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventor: Theo Nikiforov