Patents Assigned to Caliper Life Sciences
  • Patent number: 9012206
    Abstract: The invention provides methods of performing a sizing analysis. In the methods, a sizing ladder used in performing the sizing analysis is corrected. In one method, the sizing ladder is corrected for batch-to-batch variations in a sieving gel. In another method, the sizing ladder is corrected for a sample concentration that is different from the archival sizing ladder concentration. Methods are also provided in which the sizing ladder is corrected using a standard marker in a sample and/or using a real-time standard sizing ladder. The methods may be used individually or in combination.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: April 21, 2015
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Dan Camporese, Advit Bhatt, Josh Molho, Hui Xu, Ken Summers
  • Patent number: 8980644
    Abstract: The invention provides methods of controlling environmental conditions within a fluidic system, where such environmental conditions can affect the operation of the system in its desired function, and fluidic channels, devices, and systems that are used in practicing these methods. Such methods are generally directed to environmental control fluids, the movement of such fluids through these systems, and the interaction of these fluids with other components of the system, e.g., other fluids or solid components of the system.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: March 17, 2015
    Assignee: Caliper Life Sciences, Inc.
    Inventors: J. Wallace Parce, Yung-mae M. Yao, Donald J. Morrissey, Jr.
  • Publication number: 20150047980
    Abstract: The invention provides methods of performing a sizing analysis. In the methods, a sizing ladder used in performing the sizing analysis is corrected. In one method, the sizing ladder is corrected for batch-to-batch variations in a sieving gel. In another method, the sizing ladder is corrected for a sample concentration that is different from the archival sizing ladder concentration. Methods are also provided in which the sizing ladder is corrected using a standard marker in a sample and/or using a real-time standard sizing ladder. The methods may be used individually or in combination.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 19, 2015
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Dan Camporese, Advit Bhatt, Josh Molho, Hui Xu, Ken Summers
  • Patent number: 8934700
    Abstract: The invention provides a method and apparatus for isolating individual target cells. The apparatus includes a body structure comprising a main channel, a collection channel, and a waste channel fluidly coupled at a first fluid junction. A plurality of trapping channels intersect the collection channel, each trapping channel having a diameter at a location adjacent to the intersection of the trapping channel with the collection channel that is less than a diameter of an individual target cell. The apparatus also includes an imaging system configured to image individual target and non-target cells within the main channel, thereby producing imaging data; a processor configured to perform real-time, multivariate analyzes of the imaging data; and a directing system configured to direct the individual target cells. A pressure source is in fluid communication with one or more of the collection channel, the waste channel, the first side channel, and the second side channel.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: January 13, 2015
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Rajiv Bharadwaj, Bahram Fathollahi
  • Patent number: 8900811
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: December 2, 2014
    Assignees: Caliper Life Sciences, Inc., Canon U.S. Life Sciences, Inc.
    Inventors: Steven A. Sundberg, Michael R. Knapp, Ivor T. Knight, Deborah J. Boles, Aaron J. Rulison, Wesley B. Dong, Andrew G. Fabans, Allen R. Boronkay, Edward P. Donlon, Robert J. Moti, Michael Slater
  • Patent number: 8871524
    Abstract: The invention provides methods of performing a sizing analysis. In the methods, a sizing ladder used in performing the sizing analysis is corrected. In one method, the sizing ladder is corrected for batch-to-batch variations in a sieving gel. In another method, the sizing ladder is corrected for a sample concentration that is different from the archival sizing ladder concentration. Methods are also provided in which the sizing ladder is corrected using a standard marker in a sample and/or using a real-time standard sizing ladder. The methods may be used individually or in combination.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 28, 2014
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Dan Camporese, Advit Bhatt, Josh Molho, Hui Xu, Ken Summers
  • Publication number: 20140262787
    Abstract: The invention provides devices, systems, and methods for extracting target objects from a sample. In the method, a stream of sample containing a plurality of target and non-target objects is directed by first and second streams of buffer through a sample inlet channel into a fluid junction and through the fluid junction into a sample waste channel. In response to detecting a target object within the stream of sample, an actuator is energized to close a normally open valve, resulting in a transient burst of cross-flow into the fluid junction that briefly diverts the flow of sample within the fluid junction and results in an aliquot of sample being directed into an aliquot delivery channel. The combination of the valve and the actuator acts as a self-limiting pulse generator.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Joshua I. MOLHO, Daniel G. STEARNS, I-Jane CHEN, Danh TRAN, Bradley W. RICE, Tobias Daniel WHEELER, Alexander V. DUKHOVNY
  • Patent number: 8834807
    Abstract: The invention provides devices and methods for isolating one or more sample components of a sample material following separation of the sample material into a plurality of sample components. A device includes a separation channel having a sample loading well. A low-conductivity buffer is disposed in the loading well, the buffer having a conductivity<0.2 mS/cm. In a method, a buffer is loaded into a loading well in fluid communication with a separation channel of a device. A sample material having a conductivity higher than that of the buffer is then loaded into the loading well such that the sample material is disposed beneath the buffer, the buffer disposed over and covering the sample material. The sample material is separated into a plurality of separated components in the separation channel, and a separated component is collected from a collection well disposed in a collection leg of the device.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: September 16, 2014
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Josh Molho, Hui Xu
  • Publication number: 20140247971
    Abstract: The invention provides a method and apparatus for isolating individual target cells. The apparatus includes a body structure comprising a main channel, a collection channel, and a waste channel fluidly coupled at a first fluid junction. A plurality of trapping channels intersect the collection channel, each trapping channel having a diameter at a location adjacent to the intersection of the trapping channel with the collection channel that is less than a diameter of an individual target cell. The apparatus also includes an imaging system configured to image individual target and non-target cells within the main channel, thereby producing imaging data; a processor configured to perform real-time, multivariate analyses of the imaging data; and a directing system configured to direct the individual target cells. A pressure source is in fluid communication with one or more of the collection channel, the waste channel, the first side channel, and the second side channel.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Rajiv Bharadwaj, Bahram Fathollahi
  • Publication number: 20140227709
    Abstract: Methods are provided for detecting low copy nucleic acids of interest in a sample. In one method, a sample comprising a nucleic acid of interest is aliquotted into a plurality of reaction mixtures, at least two of which are single-copy reaction mixtures. The reaction mixtures are subjected to one or more amplification reactions while flowing through a channel of a microfluidic device. At least one of the reaction mixtures is formulated in an aqueous phase of an emulsion comprising aqueous droplets suspended in an immiscible liquid. The nucleic acid of interest is present as a single copy in at least one aqueous droplet of the aqueous phase prior to performing the amplification reaction(s). Amplification is performed on the reaction mixture when it is formulated in the emulsion. The nucleic acid is continuously flowed during a plurality of steps of the method.
    Type: Application
    Filed: April 14, 2014
    Publication date: August 14, 2014
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Michael R. Knapp, Jill M. Baker, Andrea W. Chow, Anne R. Kopf-Sill, Michael Spaid
  • Publication number: 20140206625
    Abstract: Dopamine reuptake inhibitors, and their analogs, are disclosed for treating and delaying the progression of autoimmune diseases.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 24, 2014
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Hao Chen, Alexei Miagkov, Lisa Leary, Ming Liu, Qi Su
  • Publication number: 20140151229
    Abstract: The invention provides microfluidic devices, systems, and methods for manipulating an object within a channel of a microfluidic device using an external electrode. The device has a channel disposed within the device, the channel having no included electrodes. The channel has a wall, at least a portion of which is penetrable by an electric field generated external to the device, the wall being penetrable such that the electric field extends through the wall portion and into a region within the channel. The system includes the microfluidic device and an electrode external to and not bonded to the device. In the method, the external electrode is placed adjacent to the device and energized to generate an electric field that extends through the wall of the device and into the channel, thereby manipulating an object within the channel.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 5, 2014
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Joshua I. Molho, Daniel G. Stearns, I-Jane Chen, Danh Tran, Bradley W. Rice, Tobias Daniel Wheeler
  • Patent number: 8697362
    Abstract: Methods are provided for detecting low copy nucleic acids of interest in a sample. In one method, a sample comprising a nucleic acid of interest is aliquotted into a plurality of reaction mixtures, at least two of which are single-copy reaction mixtures. The reaction mixtures are subjected to one or more amplification reactions while flowing through a channel of a microfluidic device. At least one of the reaction mixtures is formulated in an aqueous phase of an emulsion comprising aqueous droplets suspended in an immiscible liquid. The nucleic acid of interest is present as a single copy in at least one aqueous droplet of the aqueous phase prior to performing the amplification reaction(s). Amplification is performed on the reaction mixture when it is formulated in the emulsion. The nucleic acid is continuously flowed during a plurality of steps of the method.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: April 15, 2014
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Michael R. Knapp, Jill M. Baker, Andrea W. Chow, Anne R. Kopf-Sill, Michael A. Spaid
  • Patent number: 8691853
    Abstract: Dopamine reuptake inhibitors, and their analogs, are disclosed for treating and delaying the progression of autoimmune diseases.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: April 8, 2014
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Hao Chen, Alexel Miagkov, Lisa Leary, Ming Liu, Qi Su
  • Publication number: 20140081582
    Abstract: Techniques and systems for displaying chromatographic data using a graphical user interface are provided. Chromatographic separation data that represent multiple series of measurements for multiple samples can be displayed on a display device of a computer system as a series of bands, the bands being arranged to resemble output from an electrophoresis gel. The bands may be aligned using a marker included in each sample.
    Type: Application
    Filed: October 21, 2013
    Publication date: March 20, 2014
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventor: Steven J. Gallagher
  • Publication number: 20130315781
    Abstract: The present invention is an automated microfluidic chip processing apparatus that includes a deck for holding at least one microfluidic chip and capable of being accessed by a liquid handling system, a fluid control system, and a detection system, wherein a chip handling device transports the chip from the deck to the fluid control system and the detection system. The present invention also includes a chip for use with an automated microfluidic chip processing apparatus, and a method for processing a microfluidic chip using such an apparatus.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 28, 2013
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Michael Greenstein, Colin B. Kennedy, James C. Mikkelsen, JR.
  • Patent number: 8592141
    Abstract: A mixture of components is flowed through a binding channel region comprising a component-binding moiety, thereby binding at least a portion of a component of interest. The mixture is then flowed through a separation channel region that includes a buffer comprising a detergent, resulting in separated components. Diluent is mixed with the separated components, diluting the detergent, and the separated components are detected. The component of interest is released from the component-binding moiety and flowed through the separation channel region. Diluent is mixed with the released component of interest, diluting the detergent, and the released component of interest is detected.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: November 26, 2013
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Matthew B Murphy, Robert S. Dubrow
  • Patent number: 8545771
    Abstract: The invention provides fluidic devices having incorporated electrodes. One device comprises a card and first and second caddy segments. The first caddy segment comprises first and second electrodes. The second caddy segment comprises first and second reservoirs disposed on a first surface of the second segment, a channel disposed on a second surface of the second segment, and first and second vias extending between the first and second surfaces. The first caddy segment is attached to the first surface of the second caddy segment. The card is attached to the second surface of the second caddy segment such that the card provides a closed surface for the device.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 1, 2013
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Colin B. Kennedy, Josh Molho, Alexander V. Dukhovny
  • Patent number: 8496875
    Abstract: The present invention is an automated microfluidic chip processing apparatus that includes a deck for holding at least one microfluidic chip and capable of being accessed by a liquid handling system, a fluid control system, and a detection system, wherein a chip handling device transports the chip from the deck to the fluid control system and the detection system. The present invention also includes a chip for use with an automated microfluidic chip processing apparatus, and a method for processing a microfluidic chip using such an apparatus.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: July 30, 2013
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Michael Greenstein, Colin B. Kennedy, James C. Mikkelsen, Jr.
  • Patent number: 8460530
    Abstract: A method of modifying the concentration of reactants and carrying out a chemical reaction on a microfluidic device in which first and second reactants are delivered into a reaction channel combined, the second reactant different from the first reactant and capable of reacting with the first reactant. The first reactant is subjected to a stacking process, thereby producing a first stacked reactant. The second reactant is subjected to the stacking process, thereby producing a second stacked reactant. The first stacked reactant is exposed to the second stacked reactant so that the first stacked reactant and the second stacked reactant undergo a chemical reaction.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: June 11, 2013
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Charles Park, Irina Kazakova