Patents Assigned to Cardiac Pacemakers, Inc.
  • Patent number: 11141594
    Abstract: This document discusses, among other things, systems and methods to generate a first pacing waveform during a first pacing period and a second pacing waveform during a second pacing period, to alternate first and second pacing periods to provide pacing-based hypertension therapy to a heart of a patient to reduce patient blood pressure, and to determine an increased pacing rate for the first pacing waveform during the first pacing period using the first AV delay, wherein the first pacing waveform has a first atrioventricular (AV) delay and the second pacing waveform has a second AV delay longer than the first AV delay.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: October 12, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Stephen J. Hahn, Pramodsingh Hirasingh Thakur, Qi An, Viktoria A. Averina, Krzysztof Z. Siejko, Ramesh Wariar
  • Publication number: 20210308467
    Abstract: An implantable medical device (IMD) is configured with a pressure sensor. The IMD includes a housing and a diaphragm that is exposed to the environment outside of the housing. The diaphragm is configured to transmit a pressure from the environment outside of the housing to a piezoelectric membrane. In response, the piezoelectric membrane generates a voltage and/or a current, which is representative of a pressure change applied to the housing diaphragm. In some cases, only changes in pressure over time are used, not absolute or gauge pressures.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Keith R. Maile, William J. Linder, Moira B. Sweeney, Michael J. Kane, Brendan Early Koop
  • Patent number: 11134902
    Abstract: A medical device system has a medical device interface configured to download data from an implanted medical device. Memory stores electrode location identification rules and display definitions. Each of the display definitions correspond to possible electrode placement locations of the implanted medical device. Processing circuitry is configured to compare the downloaded data from the implanted medical device to the electrode location identification rules to identify one or more actual electrode placement locations of the possible electrode placement locations of the implanted medical device. A user output interface is in communication with the processing circuitry. The processing circuitry is configured to cause the output to display the one or more actual electrode placement locations.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: October 5, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Stephen J. Hahn, Allan Charles Shuros, Keith L. Herrmann, Deepa Mahajan
  • Patent number: 11134845
    Abstract: This document discusses, among other things, patient monitoring systems, apparatus, and methods that change the operation of an ambulatory medical device (AMD) using geographic location information.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: October 5, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Benjamin J Nyquist
  • Patent number: 11135433
    Abstract: Approaches to rank potential left ventricular (LV) pacing vectors are described. Early elimination tests are performed to determine the viability of LV cathode electrodes. Some LV cathodes are eliminated from further testing based on the early elimination tests. LV cathodes identified as viable cathodes are tested further. Viable LV cathode electrodes are tested for hemodynamic efficacy. Cardiac capture and phrenic nerve activation thresholds are then measured for potential LV pacing vectors comprising a viable LV cathode electrode and an anode electrode. The potential LV pacing vectors are ranked based on one or more of the hemodynamic efficacy of the LV cathodes, the cardiac capture thresholds, and the phrenic nerve activation thresholds.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: October 5, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Krzysztof Z. Siejko, Shibaji Shome, Jiang Ding
  • Patent number: 11129557
    Abstract: Embodiments herein relate to chemical sensors for detecting a physiological analyte. In an embodiment, an implantable medical device including a chemical sensor for detecting an ion concentration in a bodily fluid is provided. The chemical sensor can include a sensing element having an outer barrier layer forming a top, a bottom, and opposed sides, where the top of the outer barrier layer can be created from a polymeric matrix permeable to sodium ions, potassium ions, and hydronium ions. An active agent can be disposed within the top of the outer barrier layer, the active agent having anti-inflammatory effects. The chemical sensor can include an optical excitation assembly configured to illuminate the sensing element. The chemical sensor can also include an optical detection assembly configured to receive light from the sensing element. Other embodiments are also included herein.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: September 28, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yingbo Li, Michael John Kane, Jeffrey E. Stahmann, Keith R. Maile
  • Patent number: 11123570
    Abstract: A leadless pacing device may include a housing having a proximal end and a distal end, and a set of one or more electrodes supported by the housing. The housing may include a first a distal extension extending distally from the distal end thereof. The distal extension may include a retractable and/or rotatable distal electrode. The distal electrode may be configured to be delivered to and pace at the Bundle of His. The leadless pacing device may be releasably coupled to an expandable anchor mechanism.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: September 21, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Benjamin J. Haasl, Allan Charles Shuros, James O. Gilkerson, Lili Liu, Keith R. Maile, Brian Soltis, Brandon Christopher Fellows
  • Publication number: 20210283409
    Abstract: Improved devices, circuits and methods of operation in implantable stimulus systems. An implantable defibrillator may comprise a charging circuit using a transformer to store and build up energy on an HV capacitor or capacitor stack, with the HV capacitor in turn coupled to an H-bridge output circuit having low and high sides for issuing therapy. In the output current path, a current controlling circuitry is placed between the H-bridge and ground, allowing the greater flexibility in the selection of switching devices, and drivers for such devices, in the H-bridge circuit and/or enabling circuits between the H-bridge and the HV capacitor or other therapy circuit.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 16, 2021
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BRANDON TYLER KEIL, PAUL JOHN MCNAMEE, WILLIAM J. LINDER
  • Patent number: 11116966
    Abstract: Retention devices for use with an implantable medical device (IMD) are disclosed. An illustrative retention device may comprise an elongate body including a bore configured to receive and substantially surround an implantable lead of the IMD and an outer surface configured to receive a suture. The retention device may also include a securing mechanism configured to push against tissue of the patient.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: September 14, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: G. Shantanu Reddy, Andrew L. De Kock, Benjamin Michael Nitti
  • Patent number: 11116988
    Abstract: Implantable medical devices such as leadless cardiac pacemakers may include a rechargeable power source. In some cases, a system may include an implanted device including a receiving antenna and an external transmitter that transmits radiofrequency energy that may be captured by the receiving antenna and then be converted into electrical energy that may be used to recharge a rechargeable power source. Accordingly, since the rechargeable power source does not have to maintain sufficient energy stores for the expected life of the implanted device, the power source itself and thus the implanted device, may be made smaller while still meeting device longevity expectations.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: September 14, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Keith R. Maile, Michael J. Kane, William J. Linder
  • Patent number: 11116439
    Abstract: Systems and methods for detecting slow and persistent rhythms, such as indicative of ventricular response to atrial tachyarrhythmia (AT), are described herein. An arrhythmia detection system monitors patient ventricular heart rate, and identifies slow heart beats with corresponding heart rates falling below a rate threshold during a detection period. The system identifies one or more sustained slow beat (SSB) sequences each including two or more slow heart beats. The system determines a first prevalence indicator of the identified slow heart beats, and a second prevalence indicator of the identified SSB sequences during the detection period. An arrhythmia detector circuit detects a slow and persistent rhythm using the first and second prevalence indicators.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: September 14, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Sunipa Saha, Deepa Mahajan
  • Patent number: 11110281
    Abstract: A system and method for communication between an IMD and an external reader includes bringing a portion of a patient's body into contact with a device-body contact surface of an external reader. The reader transmits a first transdermal carrier wave from the contact surface into the patient's body, where the first carrier wave includes a request for communication with the IMD. The transdermal carrier waves are electrical conductive waves, optical waves, or acoustic waves. Upon detection of the first carrier wave, the IMD transmits a second transdermal carrier wave including a request for an access key from the reader and the reader replies by transmitting a third transdermal carrier wave including the access key back to the IMD. If the access key is valid, the IMD transmits information by radio frequency (RF) in an RF communication mode or a fourth transdermal carrier wave including data from the IMD.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: September 7, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bin Mi, Jonathan Bennett Shute, Kenneth P. Hoyme, Grace Ann Wiechman, Michael Sheehan Seeberger, Andrew Bomett
  • Patent number: 11103189
    Abstract: This document discusses, among other things, systems and methods to produce a combined heart sound signal of a patient using a first signal including heart sound information over a first physiologic interval and a second signal including heart sound information over the first physiologic interval.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: August 31, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan Bennett Shute, Bin Mi, Qi An, Pramodsingh Hirasingh Thakur
  • Patent number: 11103709
    Abstract: Systems and methods for pacing cardiac conductive tissue are described. A medical system includes an electrostimulation circuit that may generate His-bundle pacing (HBP) pulses for delivery at or near the His bundle. In response to the delivery of the HBP pulse, the system senses a near-field cardiac activity representative of excitation of a para-Hisian myocardial tissue, and a far-field cardiac activity representative of excitation of the His bundle and a ventricle. The system classifies a tissue response to HBP into one of a plurality of capture types based on the sensed near-field and far-field cardiac activities. The system includes a control circuit to adjust one or more stimulation parameters based on the classified capture type. The electrostimulation circuit generates and delivers the HBP pulses according to the adjusted stimulation parameters to excite the His bundle.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: August 31, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, David Arthur Casavant, Ramesh Wariar
  • Publication number: 20210252296
    Abstract: Improved devices, circuits and methods of operation in implantable stimulus systems. An implantable defibrillator may comprise an H-bridge output circuit having low and high sides, with a current controlling circuit coupled to the high side of the H-bridge output circuit and a current monitoring circuit coupled to the low side of the H-bridge output circuit. Alternate current paths to the output of the H-bridge, or to the H-Bridge itself, are used for delivering different therapies to the patient.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 19, 2021
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BRANDON TYLER KEIL, WILLIAM J. LINDER, KEITH R. MAILE
  • Publication number: 20210252299
    Abstract: Improved devices, circuits and methods of operation in implantable stimulus systems. An implantable defibrillator may comprise an H-bridge output circuit having low and high sides, with a current controlling circuit coupled to the high side of the H-bridge output circuit and a current monitoring circuit coupled to the low side of the H-bridge output circuit. A bootstrap design or a DC isolating circuit or circuit element may be used in the current controlling circuit.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 19, 2021
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventor: BRANDON TYLER KEIL
  • Publication number: 20210257849
    Abstract: Improved devices, circuits and methods of operation in implantable stimulus systems. An implantable defibrillator may comprise a charging circuit using a transformer to store and build up energy on an HV capacitor or capacitor stack, with the HV capacitor in turn coupled to an H-bridge output circuit having low and high sides for issuing therapy. A current monitoring circuitry is provided on the low side of the H-Bridge and used to form a feedback loop to control current into a transformer that converts battery voltage to a signal that charges the HV capacitor to control current through the H-bridge.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 19, 2021
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BRANDON TYLER KEIL, WILLIAM J. LINDER, KEITH R. MAILE
  • Patent number: 11089983
    Abstract: Embodiments herein relate to implantable multimode analyte sensors and medical devices including the same. In an embodiment, an implantable medical device is included having an optical excitation assembly, an optical detection assembly and a multimode sensing element. The multimode sensing element can include a colorimetric response element specific for a first chemical analyte and a photoluminescent response element specific for a second chemical analyte. Other embodiments are also included herein.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: August 17, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yingbo Li, Michael J. Kane, Keith R. Maile
  • Patent number: 11089958
    Abstract: Systems and methods for managing machine-generated medical events detected from one or more patients are described herein. A medical event management system includes an event analyzer circuit to detect a medical event using physiological data from a patient-triggered episode acquired from a medical device. The event analyzer circuit determines a confidence score of the medical event detection, and generates an alignment indicator indicating a degree of concordance between the detected medical event and the information about the patient-triggered episode. The system assigns priority information to the patient-triggered episode using the generated alignment indicator and the confidence score of the detection. An output circuit can output the received physiological information to a user or a process according to the assigned priority information.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: August 17, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Amy Jean Brisben, Qi An, Pramodsingh Hirasingh Thakur, David J. Ternes, JoAnna Trapp Simpson, Viktoria A. Averina, Deepa Mahajan, Sunipa Saha, Krzysztof Z. Siejko
  • Patent number: 11083898
    Abstract: This document discusses, among other things, a modular antitachyarrhythmia therapy system. In an example, a modular antitachyarrhythmia system includes at least two separate modules that coordinate delivery an antitachyarrhythmia therapy, such as defibrillation therapy. In another example, a modular antitachyarrhythmia therapy system includes a sensing module, an analysis module, and a therapy module.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: August 10, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Joseph M. Smith, Richard Milon Dujmovic, Jr.