Patents Assigned to Cardiac Pacemakers, Inc.
  • Patent number: 10894162
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery device may include an intermediate tubular member and an inner tubular member slidably disposed within a lumen of the intermediate tubular member. A distal holding section may extend distally of a distal end of the intermediate tubular member and define a cavity therein for receiving an implantable leadless pacing device. At least a portion of the lumen of the inner tubular member may be bifurcated to form a first lumen and a second lumen.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: January 19, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brian Soltis, Ronald W. Kunkel, Kurt G. Koubal, James P. Goodman
  • Patent number: 10893824
    Abstract: A system and method for automatically analyzing heart failure in a patient, including collecting physiological data from a patient using at least a first sensor and a second sensor to collect two or more sensor measurements, and calculating a first composite value based on at least a first sensor measurement wherein the first composite value is an indication of a likelihood that the patient's heart failure status has changed. If the first composite value is outside of a first specified range, then a second composite value is calculated based on at least a second sensor measurement, wherein the second composite value is an indication of a likelihood that the patient's heart failure status has changed. If the second composite value is outside of a second specified range, then an alert of change in heart failure status is generated.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: January 19, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Yi Zhang
  • Patent number: 10894163
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker (LCP) implanted in or proximate the left ventricle of a patient. A setup phase is used to establish parameters in the therapy delivery. In operation, the method and/or device will sense at least one non-paced cardiac cycle to determine a native R-R interval, and then delivers a synchronization pace at an interval less than the native R-R interval followed by a plurality of pace therapies delivered at the R-R interval or a modification thereof.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: January 19, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventor: Jeffrey E. Stahmann
  • Patent number: 10893813
    Abstract: Various system embodiments comprise a stimulator adapted to deliver a stimulation signal for a heart failure therapy, a number of sensors adapted to provide at least a first measurement of a heart failure status and a second measurement of the heart failure status, and a controller. The controller is connected to the stimulator and to the number of sensors. The controller is adapted to use the first and second measurements to create a heart failure status index, and control the stimulator to modulate the signal using the index. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: January 19, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Krzysztof Z. Siejko, Marina V. Brockway, Robert J. Sweeney
  • Patent number: 10896754
    Abstract: The technology herein relates to a troubleshooting system for remote patient monitoring. A plurality of triggering conditions defines a data transmission error between a sensor and a remote location. A data transmission log is configured to receive characterization data defining each successful data transmission between a communicator and the remote location. An input user interface is configured to receive input from a user and an output user interface is configured to provide notification to a user. Processing circuitry is in communication with the input interface and the output interface, where the processing circuitry is configured to compare each of the triggering conditions to the characterization data to identify a data transmission error. Upon identification of the data transmission error, the processing circuitry causes the output interface to present a query to the user.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: January 19, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Kimberly Anne Eridon, Arwinder Pal Singh, Pratik K. Pandya, Ranganathan Balasubramanian Iyer, Viktoria A. Averina
  • Patent number: 10888697
    Abstract: Tools adapted to allow a fixation device to be applied near the distal end of an implantable lead, and methods for using such tools. Preparing the lead for implantation may be performed by placing a tool over a distal tip of the lead, moving a fixation device from the tool to the lead, and placing the fixation device the lead.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: January 12, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Andrew L. De Kock, G. Shantanu Reddy
  • Patent number: 10888238
    Abstract: Methods and/or device facilitating and selecting among multiple modes of filtering a cardiac electrical signal, in which one filtering mode includes additional high pass filtering of low frequency signals, relative to the other filtering mode. The selection filtering modes may include comparing sensed signal amplitude to one or more thresholds, using the multiple modes of filtering. In another example, an additional high pass filter is enabled, over and above a default or baseline filtering mode, and the detected cardiac signal is monitored for indications of possible undersensing, and/or for drops in amplitude toward a threshold, and the additional high pass filter may be disabled upon finding of possible undersensing or drop in signal amplitude.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: January 12, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Venugopal Allavatam, Stephen J. Hahn, Keith L. Herrmann, Mitchell D. Lanz, Krzysztof Z. Siejko, Benjamin Speakman
  • Patent number: 10888702
    Abstract: An interrogation system for a medical device includes a memory storing a diagnostic algorithm, a processor configured to run the diagnostic algorithm, and a communication module configured to facilitate data transfer between the interrogation system and the medical device. The diagnostic algorithm is configured to reach a diagnostic conclusion based on data from the medical device. The diagnostic algorithm is configured to iteratively interrogate the medical device for the data from the medical device until the diagnostic algorithm reaches the diagnostic conclusion, each iterative interrogation requesting additional data as compared to prior iterations. The communication module is configured to receive the additional data from the medical device in response to each iterative interrogation. The diagnostic algorithm is further configured to store an indication of the diagnostic conclusion within the memory.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: January 12, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Howard D. Simms, Jr.
  • Patent number: 10881317
    Abstract: An apparatus comprises an arrhythmia detection circuit configured to: detect atrial arrhythmia in a first portion of a sensed cardiac signal using a first arrhythmia detection criteria, wherein the sensed cardiac signal is representative of cardiac activity of a subject; and upon detection of the atrial arrhythmia, analyze a second portion of the cardiac signal that is prior in time to the first portion using a second different arrhythmia detection criteria to detect the presence or absence of the atrial arrhythmia in the second portion of the cardiac signal.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: January 5, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Sunipa Saha
  • Patent number: 10881869
    Abstract: Near-field energy transmitters for charging a rechargeable power source of an implantable medical device (IMD). In some cases, the transmitter may include an output driver that may drive a transmit coil such that near-field energy is transmitted to the IMD at a determined frequency. In some cases, the IMD may include a receiving coil that may capture the near-field energy and then convert the near-field energy into electrical energy that may be used to recharge the rechargeable power source. Since the rechargeable power source does not have to maintain sufficient energy stores in a single charge for the entire expected life of the IMD, the power source itself and thus the IMD may be made smaller while still meeting device longevity requirements.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: January 5, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Keith R. Maile, William J. Linder, Michael J. Kane, Jeffrey E. Stahmann, Jacob M. Ludwig, Brendan Early Koop, Daniel Joseph Landherr, Greg Paul Carpenter
  • Patent number: 10881863
    Abstract: Implantable medical devices such as leadless cardiac pacemakers may be configured to communicate using more than one mode of communication. For example, in some cases, an implantable medical device may be configured to communicate via conducted communication in some circumstances and to communicate via inductive communication in other circumstances. In some cases, the implantable medical device may be configured to switch between communication modes in order to improve communication.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: January 5, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Keith R. Maile, William J. Linder, Jacob M. Ludwig
  • Patent number: 10874457
    Abstract: Segmented ground pads for electrophysiology systems are disclosed. In an embodiment, a ground pad array system for use with an electrophysiology system comprises: a ground pad comprising a plurality of conductive segments, wherein each conductive segment is capable of being independently activated. The embodiment also includes a plurality of conductive wires coupled to the plurality of conductive segments and a switching apparatus. The switching apparatus is configured to activate one or more conductive segments, wherein the ground pad strip provides a ground path for energy emitted by a catheter of the electrophysiology system, in response to the activation of the one or more conductive segments.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: December 29, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Esteban Martin Solorzano Zeledon, Adrian Valdelomar
  • Patent number: 10881016
    Abstract: A medical device includes a hybrid circuitry assembly and a core circuitry support structure. The core circuitry support structure includes a frame defining a cavity configured to receive at least a portion of the hybrid circuitry assembly. An outer surface of the frame is shaped to correspond to an inside surface of a core assembly housing configured to enclose the hybrid circuitry assembly and the core circuitry support structure.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: December 29, 2020
    Assignee: Cardiac Pacemaker, Inc.
    Inventors: Jean M. Bobgan, David P. Stieper, Joseph Prescott
  • Patent number: 10874861
    Abstract: A ventricular implantable medical device that is configured to detect an atrial timing fiducial from the ventricle. The ventricular implantable medical is configured to deliver a ventricular pacing therapy to the ventricle based on the detected atrial timing fiducial. If the ventricular implantable medical device temporarily fails to detect atrial activity because of noise, posture, patient activity or for any other reason, an atrial implantable medical device may be configured to communicate atrial events to the ventricular implantable medical device and the ventricular implantable medical device may synchronize the ventricular pacing therapy with the atrium activity based on those communications.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: December 29, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Jeffrey E. Stahmann, Allan Charles Shuros, Keith R. Maile, Benjamin J. Haasl
  • Patent number: 10874843
    Abstract: A medical device made of a hybrid polymeric structure includes a tubular body including a first layer and a second layer. The first layer includes a fibrous matrix comprising a plurality of randomly oriented nanofibers made at least in part of a first polymeric material and pores formed between at least a portion of the nanofibers. The second layer is made at least in part of a second polymeric material. At least a portion of the second layer is disposed about and between the plurality of nanofibers such that at least a portion of the second polymeric material is embedded into at least a portion of the pores of the fibrous matrix.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: December 29, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Adegbola O. Adenusi, James P. Rohl, David R. Wulfman, Joseph T. Delaney, Jr., Adeniyi Aremu
  • Patent number: 10874860
    Abstract: A leadless cardiac pacemaker (LCP) is configured to sense cardiac activity and to pace a patient's heart and is disposable within a ventricle of the patient's heart. The LCP MAY include a housing, a first electrode and a second electrode that are secured relative to the housing and are spaced apart. A controller is disposed within the housing and is operably coupled to the first electrode and the second electrode such that the controller is capable of receiving, via the first electrode and the second electrode, electrical cardiac signals of the heart. The LCP may include a pressure sensor and/or an accelerometer. The controller may determine a pace time within a cardiac cycle based at least in part upon an indication of metabolic demand.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: December 29, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Michael J. Kane, Yinghong Yu, Jeffrey E. Stahmann, Pramodsingh Hirasingh Thakur, Keith R. Maile
  • Patent number: 10870008
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker and an extracardiac device. The extracardiac device is configured to analyze one or more QRS complexes of the patient's heart, determine whether fusion pacing is taking place, and, if not, to communicate with the leadless cardiac pacemaker to adjust intervals used in the CRT in order to generate desirable fusion of the pace and intrinsic signals. The extracardiac device may take the form of a subcutaneous implantable monitor, a subcutaneous implantable defibrillator, or other devices including wearable devices.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: December 22, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Kenneth M. Stein, Yinghong Yu, Scott J. Healy, John Morgan
  • Patent number: 10870007
    Abstract: This document discusses, among other things, systems and methods to acclimate a patient to therapy from an implantable medical device. For instance, an implantable medical device can include pulse generation circuitry, sensing circuitry, and a controller. The pulse generation circuitry can generate electrical pulses. The sensing circuitry can be for sensing cardiac electrical activity of the patient. In an example, the controller can detect cardiac events that define pacing timing intervals and control the delivery of electrical pulses in accordance with a programmed mode. The controller can be programmed to provide instructions to the pulse generation circuitry to deliver electrical pulses to the heart of a patient. In an example, the electrical pulses can be based on a therapy parameter. The controller can be configured to adjust the therapy parameter according to an acclimation profile to acclimate the patient to a stimulation therapy.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: December 22, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Keith L. Herrmann, Stephen J. Hahn
  • Patent number: 10870009
    Abstract: This document discusses, among other things, systems and methods related to a flexible circuit buzzer apparatus, such as a buzzer apparatus for use in an implantable medical device. In an example, the buzzer apparatus can include a flexible circuit having a first dielectric layer. A conductive layer can be disposed on the first dielectric layer. A hole can be formed in the first dielectric layer, the conductive layer, or both. A buzzer including a first contact can be located proximate to the hole. A conductive via can be plated or deposited in the hole. At least the first contact can be electrically coupled to the conductive layer by the conductive via.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: December 22, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: James E. Blood, Scott A. Spadgenske, Doug E. Giwoyna, Lonnie D. Myers, Shawn Larson, David A. Chizek
  • Patent number: 10863948
    Abstract: Systems and methods for monitoring patients for risk of worsening heart failure (WHF) are discussed. A patient management system includes a receiver to receive patient respiration measurement. A respiratory pattern analyzer circuit measures respiratory pattern indicative of rapid-shallow breathing pattern from the received respiration measurement, and determine a respiratory pattern variability indicator. A risk analyzer circuit determines patient WHF risk using the respiratory pattern variability indicator. The system may use the WHF risk to guide WHF event detection, or to deliver or adjust a heart failure therapy.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: December 15, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Jianjun Yuan, Pramodsingh Hirasingh Thakur, Yi Zhang, Rezwan Ahmed, Viktoria A. Averina