Patents Assigned to Cardiac Pacemakers, Inc.
  • Patent number: 10780278
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker (LCP) and an extracardiac device (ED). The LCP is configured to deliver pacing therapy at a pacing interval. Illustratively, the ED may be configured to analyze the cardiac cycle including a portion preceding the pacing therapy delivery for one or several cardiac cycles, and determine whether an interval from the P-wave to the pace therapy in the cardiac cycle(s) is in a desired range. In an example, if the P-wave to pace interval is outside the desired range, the ED communicates to the LCP to adjust the pacing interval.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: September 22, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Krzysztof Z. Siejko, Amy Jean Brisben, Keith R. Maile, Jr.
  • Patent number: 10773089
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery device may include an intermediate tubular member and an inner tubular member slidably disposed within a lumen of the intermediate tubular member. A distal holding section may extend distally of a distal end of the intermediate tubular member and define a cavity therein for receiving an implantable leadless pacing device. The device may be configured to enable fluid flushing of the delivery device prior to use, to remove any air from within the device as well as providing the option of fluid flow during use of the delivery device.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: September 15, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brian Soltis, Benjamin J. Haasl, James P. Goodman, Vincent P. Hackenmueller
  • Patent number: 10765379
    Abstract: Systems and methods for managing machine-generated medical alerts associated with physiological events detected from one or more patients are described herein. An alert management system may receive medical events detected from a patient and physiological data associated with patient historical medical alerts. The system comprises an alert prioritizer circuit to generate an event priority indicator for the detected medical event, using a comparison between the detected medical event and the physiological data associated with patient historical medical alerts. The system can identify prolific alert patients using the information about the historical medical alerts. The alert prioritizer circuit can adjust a priority of the detected medical event, and an output circuit can present a priority to a user or a process using the event priority indicator and the identification of prolific alert patient.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: September 8, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Sunipa Saha, JoAnna Trapp Simpson, Keith Mattson
  • Patent number: 10765871
    Abstract: An implantable medical device (IMD) is configured with a pressure sensor. The IMD includes a housing, a pressure sensor and a fluid filled cavity. The housing has a diaphragm that is exposed to the environment outside of the housing. The pressure sensor has a pressure sensor diaphragm that is responsive to a pressure applied to the pressure sensor diaphragm and provides a pressure sensor output signal that is representative of the pressure applied to the pressure sensor diaphragm. The fluid filled cavity is in fluid communication with both the diaphragm of the housing and the pressure sensor diaphragm of the pressure sensor. The fluid filled cavity is configured to communicate a measure related to the pressure applied by the environment to the diaphragm of the housing to the pressure sensor diaphragm of the pressure sensor.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: September 8, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, Benjamin J. Haasl, Keith R. Maile
  • Patent number: 10758724
    Abstract: A delivery and deployment device may include a handle assembly and a shaft extending distally from the handle assembly. A device containment housing may be coupled to a distal region of the shaft and may extend distally therefrom. The distal containment housing may be configured to accommodate at least a portion of the IMD therein. The IMD may, for example, be a leadless pacemaker, a lead, a neurostimulation device, a sensor or any other suitable IMD. A plurality of electrodes may be distributed about an exterior surface of the device containment housing such that at least some of the plurality of electrodes may be positioned to test a potential IMD deployment location before deploying the IMD.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: September 1, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Yinghong Yu, Qi An, Keith R. Maile, Pramodsingh Hirasingh Thakur, Bin Mi, Jeffrey E. Stahmann, Viktoria A. Averina, Krzysztof Z. Siejko, Michael J. Kane, Allan Charles Shuros, Arjun D. Sharma, Brian Soltis
  • Patent number: 10758655
    Abstract: This document discusses, among other things, systems and methods to reduce ischemic or metabolic injury to a patient's heart. A system to reduce ischemic or metabolic injury to a patient's heart may include a pulse generator for generating electrical pulses or shock, a pacing lead with at least one pacing electrode configured to deliver electrical pulses received from the pulse generator to the patient's heart, a controller configured to control timing of electrical pulses to reduce wall stress of the heart, and a reservoir, fluidically coupled to a lumen and a pump, wherein the pump is configured, under control of the controller, to move contents from the reservoir through the lumen to an area of the heart with the reduced wall stress, wherein the contents include autologous respiration-competent mitochondria or other respiratory-promoting agents.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 1, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barbara Ann Huibregtse, Thomas John Herbst, Craig Stolen, Eric M. Schneider, Lynne E. Swanson, Lili Liu
  • Patent number: 10758737
    Abstract: A medical system for sensing and regulating cardiac activity of a patient may include a cardioverter that is configured to generate and deliver shocks to cardiac tissue and a leadless cardiac pacemaker (LCP) that is configured to sense cardiac activity and to communicate with the cardioverter. The cardioverter may be configured to detect a possible arrhythmia and, upon detecting the possible arrhythmia, may send a verification request to the LCP to help conform that the possible arrhythmia is occurring. The LCP, upon receiving the verification request from the cardioverter, may be configured to activate one or more of a plurality of sensors to attempt to help confirm that the possible arrhythmia is occurring.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: September 1, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Jeffrey E. Stahmann, Yinghong Yu, Michael J. Kane
  • Patent number: 10751543
    Abstract: Cardiac therapy devices in the form of pacemakers and/or defibrillators including one or more leads with electrodes implanted in a vein in a posterior position in combination with one or more leads with electrodes implanted in an anterior position. The posterior position may be chosen from one or more of the azygos, hemiazygos, accessory hemiazygos, or posterior intercostal veins. The anterior position may be chosen from the internal thoracic vein, an anterior intercostal vein, or an anterior subcutaneous location. In other examples, sensors are placed for use by a cardiac monitoring or therapy system in one or more of the internal thoracic vein, the azygos vein, the hemiazygos vein, the accessory hemiazygos vein, and/or an anterior or posterior intercostal vein.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 25, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: G. Shantanu Reddy, Eric Falbe Hammill, James O. Gilkerson, Ramesh Wariar, Pramodsingh Hirasingh Thakur
  • Patent number: 10750996
    Abstract: An apparatus comprises plurality of physiologic sensors and a processor circuit. The sensors provide sensor signals having physiological information and include a heart sound sensor and an impedance sensor. The processor circuit includes a volume index module configured to determine a value of at least one heart sound parameter using the heart sound signal and determine a value of at least one physiological impedance parameter value using the impedance signal, calculate a volume index representative of fluid volume status of the subject using the at least one heart sound parameter value and the at least one physiological impedance parameter value, compare a determined metric of the calculated volume index to one or more high threshold metric values and one or more low threshold metric values, and generate an indication of a fluid volume status of the subject according to the comparison.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: August 25, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Ramesh Wariar
  • Patent number: 10751526
    Abstract: Methods and kits for subcutaneous defibrillator implantation. In various examples, two introducer tools each having a sheath are used during an implantation procedure to obviate the need for pulling a lead using a suture. The elimination of the suture-based pulling steps may reduce procedure time. A kit having two introducer tool and corresponding sheaths is also disclosed.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: August 25, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventor: G. Shantanu Reddy
  • Patent number: 10744334
    Abstract: Systems and methods for detecting cardiac arrhythmias such as an atrial fibrillation (AF) are described herein. The AF detection system includes a sensor circuit to sense a physiological signal, a heartbeat processor to recognize a plurality of beat patterns using cycle length of two more consecutive cardiac cycles. The beat patterns can be indicative of temporal relationship between the consecutive cardiac cycles. The heartbeat processor may generate a repetitiveness indictor based on a statistical measurement of various beat patterns. The AF detection system includes an arrhythmia detector to detect an episode of AF based on the repetitiveness indictor, and to discriminate the AF from other arrhythmias of atrio-ventricular conduction abnormalities.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: August 18, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Arjun D. Sharma, Sunipa Saha, Krzysztof Z. Siejko
  • Patent number: 10737102
    Abstract: An implantable medical device (IMD) may include a fixation module, and a device module that is configured to be releasably connected to the fixation module. The device module may have a proximal end and a distal end, and may include a power source and a controller that is operably coupled to the power source. The controller may be configured to sense cardiac electrical activity via two or more electrodes and/or deliver pacing pulses via two or more electrodes. The device module may include a first part of a releasable connector while the fixation module may include a second part of the releasable connector, wherein the first part of the releasable connector and the second part of the releasable connector cooperate to releasably connect the device module with the fixation module.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: August 11, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Erin Kristen Webb, Bryan J. Swackhamer, Dana Sachs
  • Patent number: 10737092
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example method for delivering the implantable leadless pacing device may include distally advancing an intermediate tubular member of a delivery system across the tricuspid valve and into the right ventricle. An outer tubular member of the delivery device may be torqued in a first direction to guide a distal holding section along the ventricular septum. The distal tip of the distal holding section may be releaseably secured to a tissue. After securing the distal tip of the distal holding section, the outer tubular member may be torqued in a second direction opposite to the first direction and the implantable leadless pacing device incrementally deployed.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 11, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Allan Charles Shuros, Brian Soltis
  • Publication number: 20200246627
    Abstract: Systems and methods involve an intrathoracic cardiac stimulation device operable to provide autonomous cardiac sensing and energy delivery. The cardiac stimulation device includes a housing configured for intrathoracic placement relative to a patient's heart. A fixation arrangement of the housing is configured to affix the housing at an implant location within cardiac tissue or cardiac vasculature. An electrode arrangement supported by the housing is configured to sense cardiac activity and deliver stimulation energy to the cardiac tissue or cardiac vasculature. Energy delivery circuitry in the housing is coupled to the electrode arrangement. Detection circuitry is provided in the housing and coupled to the electrode arrangement. Communications circuitry may optionally be supported by the housing. A controller in the housing coordinates delivery of energy to the cardiac tissue or cardiac vasculature in accordance with an energy delivery protocol appropriate for the implant location.
    Type: Application
    Filed: March 31, 2020
    Publication date: August 6, 2020
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey P. Bodner, Randy Bierwerth
  • Publication number: 20200246060
    Abstract: Extraction devices for extracting chronically implanted devices such as leadless cardiac pacemakers (LCP). In some cases, the extraction devices may be configured to cut, tear or ablate through at least some of the tissue ingrowth around and/or over the chronically implanted device such that a retrieval feature on the chronically implanted device may be grasped for removal of the chronically implanted device. Implantable medical devices such as LCPs may include features that facilitate their removal.
    Type: Application
    Filed: March 31, 2020
    Publication date: August 6, 2020
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Allan Charles Shuros, Arjun D. Sharma, Brian Soltis
  • Publication number: 20200246610
    Abstract: Implantable devices and systems include one or more leads adapted to be emplaced in the internal thoracic vein (ITV) of a patient. The lead may include features to adapt the lead for such placement. An associated device for use with the lead may include operational circuitry adapted for use with a lead having an electrode for sensing and/or therapy purposes coupled thereto. Methods for implantation and use of such devices and systems are disclosed as well.
    Type: Application
    Filed: January 29, 2020
    Publication date: August 6, 2020
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: G. SHANTANU REDDY, JAMES O. GILKERSON, ANDREW L. DE KOCK, JAMES K. CAWTHRA, Jr., ERIC HAMMILL
  • Patent number: 10729463
    Abstract: Aspects of the present disclosure are directed toward apparatuses, methods, and systems comprising an introducer apparatus for facilitating subcutaneous implantation of a medical device. The introducer apparatus may include a housing and an inserter configured to disengage from the second portion.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: August 4, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Serge Dubeau, Tyler Thompson, Kathryn Sick
  • Patent number: 10734139
    Abstract: A feedthrough assembly and methods of making the feedthrough assembly are shown. A feedthrough assembly including a ferrule disposed about an insulator and having an outer surface and a first aperture defined by an inner surface, wherein the first aperture is sized and shaped to include a reservoir for a braze material, the reservoir including a base, the base having a width sized to accommodate a preform of the braze material, and at least two ledges formed by the inner surface, each ledge having a first surface facing inwardly toward the insulator and a second surface facing upwardly is shown. Methods of making the feedthrough assembly including such a ferrule are shown.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: August 4, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Troy Anthony Giese
  • Patent number: 10729909
    Abstract: A system and method to sense heart sounds with one or more implantable medical devices according to one or more signal processing parameters. The method alters one or more of the parameters as a function of one or more physiologic triggering events. The method then senses heart sounds with the one or more implantable medical devices according to at least the one or more altered signal processing parameters.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: August 4, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Krzysztof Z. Siejko, Carlos Haro, Abhilash Patangay, Gerrard M. Carlson, Andres Belalcazar
  • Patent number: D893729
    Type: Grant
    Filed: October 28, 2018
    Date of Patent: August 18, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David B. Joda, David P. Stieper