Patents Assigned to Catalysis
  • Patent number: 7951351
    Abstract: Methods of preparing single walled carbon nanotubes from a metal catalyst having deposited thereon fullerenes are provided. Fullerenes are deposited onto a metal catalyst precursor or metal catalyst. In the presence of a carbon containing gas, the metal catalyst precursor/fullerene composition is then exposed to conditions suitable for reducing the metal catalyst precursor, for subliming the fullerene and for growing single walled carbon nanotubes. The fullerenes form the end caps for the resulting single walled carbon nanotubes, which are uniform in diameter.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: May 31, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, Howard Tennent
  • Patent number: 7947247
    Abstract: Methods of preparing single walled carbon nanotubes are provided. An arrangement comprising one or more layers of fullerene in contact with one side of a metal layer and a solid carbon source in contact with the other side of metal layer is prepared. The fullerene/metal layer/solid carbon source arrangement is then heated to a temperature below where the fullerenes sublime. Alternatively, a non-solid carbon source may be used in place of a solid carbon source or the metal layer may simply be saturated with carbon atoms. A multiplicity of single walled carbon nanotubes are grown on the fullerene side of the metal layer, wherein at least 80% of the single walled carbon nanotubes in said multiplicity have a diameter within ±5% of a single walled carbon nanotube diameter D present in said multiplicity, said diameter D being in the range between 0.6-2.2 nm.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: May 24, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Howard Tennent, Hai-feng Zhang, Jun Ma
  • Publication number: 20110114886
    Abstract: The invention relates to a colloidal dispersion comprising rhabdophane-structured rare-earth phosphate particles (Ln) and a polyphosphate. Said dispersion is prepared by a method consisting in forming a medium comprising at least one type of rare-earth salt and a poly phosphate in such quantities that the P/Ln ratio is equal to or higher than 3, in heating the thus obtained medium and in removing residual salts, thereby obtaining said dispersion. Said invention also relates to a transparent luminescent material which is obtainable from said dispersion and based on the rare-earth phosphate particles and a polyphosphate and whose P/Ln ratio is higher than 1, to a luminescent system comprising said material and to an excitation source.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 19, 2011
    Applicants: Rhodia Electronics, Catalysis
    Inventors: Jean-Pierre Boilot, Valérie Buissette, Jean-Yves Chane-Ching, Thierry Gacoin, Thierry Le-Mercier
  • Publication number: 20110097252
    Abstract: The inventive composition, according to a first embodiment, consists essentially of a cerium oxide and a zirconium oxide in an atomic ratio Ce/Zr of at least 1. According to a second embodiment, said composition is based on cerium oxide, zirconium oxide with an atomic ratio Ce/Zr of at least 1 and at least one rare earth oxide other than cerium. After calcination at 1100° C., said composition has a specific surface of at least 9 m2/g in the second embodiment. The inventive composition can be used as a catalyst especially for the treatment of waste gases from internal combustion engines.
    Type: Application
    Filed: December 23, 2010
    Publication date: April 28, 2011
    Applicant: RHODIA ELECTRONICS AND CATALYSIS
    Inventors: Olivier LARCHER, Emmanuel Rohart
  • Patent number: 7923403
    Abstract: A new method for preparing a supported catalyst is herein provided. The supported catalyst comprises a carbon nanotube network structure containing metal catalysts. The metal catalyst may be loaded onto functionalized carbon nanotubes before forming the carbon nanotube network structure. Alternatively, the metal catalyst may be loaded onto the carbon nanotube network structures themselves.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: April 12, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, David Moy, Alan Fischer, Robert Hoch
  • Publication number: 20110073344
    Abstract: A composition for forming a gasket comprises a curable elastomer material and 0.1-20 weight % (e.g., 4-10 weight %) carbon nanotubes dispersed throughout the elastomer material. A dispensed bead of elastomer material exhibits a Slump ratio of at least 0.7. The composition provides the correct balance of rheology/dispensing characteristics, seal characteristics, and contamination profile characteristics required in form-in-place gasket applications, while simultaneously providing a conductive form-in-place gasket.
    Type: Application
    Filed: September 29, 2010
    Publication date: March 31, 2011
    Applicant: HYPERION CATALYSIS INTERNATIONAL, INC.
    Inventors: Yuanheng ZHANG, Mark HYMAN, Robert Bernard ANDERSON, III, Dylan LAM
  • Patent number: 7910650
    Abstract: Methods of preparing conductive thermoset precursors containing carbon nanotubes is provided. Also provided is a method of preparing conductive thermosets containing carbon nanotubes. The carbon nanotubes may in individual form or in the form of aggregates having a macromorpology resembling the shape of a cotton candy, bird nest, combed yarn or open net. Preferred multiwalled carbon nanotubes have diameters no greater than 1 micron and preferred single walled carbon nanotubes have diameters less than 5 nm. Carbon nanotubes may be adequately dispersed in a thermoset precursor by using a extrusion process generally reserved for thermoplastics. The thermoset precursor may be a precursor for epoxy, phenolic, polyimide, urethane, polyester, vinyl ester or silicone. A preferred thermoset precursor is a bisphenol A derivative.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 22, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Alan Fischer, Timothy Jozokos, James Leacock, Andrew Rich
  • Patent number: 7880376
    Abstract: Field emission devices comprising carbon nanotube mats which have been treated with laser or plasma are provided. Mats are formed from carbon nanotubes, also known as carbon fibrils, which are vermicular carbon deposits having diameters of less than about one micron. The carbon nanotube mats are then subjected to laser or plasma treatment. The treated carbon nanotube mat results in improved field emission performance as either a field emission cathode or as part of a field emission device.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: February 1, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Mikio Takai, Alan Fischer, Lein Ngaw, Chunming Niu
  • Publication number: 20110002838
    Abstract: Methods of preparing single walled carbon nanotubes are provided. An arrangement comprising one or more layers of fullerene in contact with one side of a metal layer and a solid carbon source in contact with the other side of metal layer is prepared. The fullerene/metal layer/solid carbon source arrangement is then heated to a temperature below where the fullerenes sublime. Alternatively, a non-solid carbon source may be used in place of a solid carbon source or the metal layer may simply be saturated with carbon atoms. A multiplicity of single walled carbon nanotubes are grown on the fullerene side of the metal layer, wherein at least 80% of the single walled carbon nanotubes in said multiplicity have a diameter within ±5% of a single walled carbon nanotube diameter D present in said multiplicity, said diameter D being in the range between 0.6-2.2 nm.
    Type: Application
    Filed: March 29, 2007
    Publication date: January 6, 2011
    Applicant: Hyperion Catalysis International, Inc
    Inventors: Howard Tennent, Hai-feng Zhang, Jun Ma
  • Patent number: 7862790
    Abstract: A plurality of carbide, such as silicon carbide, tungsten carbide, etc., nanofibrils predominantly having diameters substantially less than about 100 nm and a method for making such carbide nanofibrils.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: January 4, 2011
    Assignee: Hyperion Catalysis Internationl, Inc.
    Inventors: David Moy, Chun-Ming Niu
  • Patent number: 7862795
    Abstract: Methods of preparing single walled carbon nanotubes are provided. Carbon containing gas is contacted with a supported metal catalyst under reaction conditions to yield at least 90% single walled carbon nanotubes and at least 1 gram single walled carbon nanotubes/gram metal catalyst. The support material may be calcined at temperatures between 150 and 600° C., and may have at least one oxidized planar surface. Reaction conditions include less than 10 atmospheres pressure and less than 800° C.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: January 4, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Xinjie Zhang, Jun Ma, Howard Tennent, Robert Hoch
  • Patent number: 7854945
    Abstract: Graphitic nanotubes, which includes tubular fullerenes (commonly called “buckytubes”) and fibrils, which are functionalized by chemical substitution or by adsorption of functional moieties. More specifically the invention relates to graphitic nanotubes which are uniformly or non-uniformly substituted with chemical moieties or upon which certain cyclic compounds are adsorbed and to complex structures comprised of such functionalized fibrils linked to one another. The invention also relates to methods of introducing functional groups onto the surface of such fibrils.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: December 21, 2010
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Alan Fischer, Robert Hoch, David Moy, Chun-Ming Niu, Naoya Ogata, Howard Tennent
  • Patent number: 7852613
    Abstract: The present invention relates to electroconductive inks and methods of making and using the same. The electroconductive inks include carbon fibrils and a liquid vehicle. The electroconductive ink may further include a polymeric binder. The electroconductive filler used is carbon fibrils which may be oxidized. The ink has rheological properties similar to that of commercially available electroconductive inks that use carbon black as their filler. The ink can be screen-printed, slot-coated, sprayed, brushed or dipped onto a wide variety of substrates to form an electroconductive coating.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: December 14, 2010
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, Alan Fischer, Chunming Niu, Lein Ngaw
  • Publication number: 20100221173
    Abstract: Methods of preparing single walled carbon nanotubes are provided. An arrangement comprising one or more layers of fullerene in contact with one side of a metal layer and a solid carbon source in contact with the other side of metal layer is prepared. The fullerene/metal layer/solid carbon source arrangement is then heated to a temperature below where the fullerenes sublime. Single walled carbon nanotubes are grown on the fullerene side of the metal layer.
    Type: Application
    Filed: March 29, 2006
    Publication date: September 2, 2010
    Applicant: Hyperion Catalysis International, Inc.
    Inventors: Howard Tennent, Hai-feng Zhang, Jun Ma
  • Publication number: 20100113259
    Abstract: An activated catalyst capable of selectively growing single-walled carbon nanotubes when reacted with carbonaceous gas is provided. The activated catalyst is formed by reducing a catalyst that comprises a complex oxide. The complex oxide may be of formula AxByOz, wherein x/y?2 and z/y?4, A being a Group VIII element and B being an element such that an oxide of element B is not reducible in the presence of hydrogen at a temperature less than or equal to about 900° C. Methods of making, uses for and carbon fibril-containing product made with these activated catalysts are also provided.
    Type: Application
    Filed: February 7, 2006
    Publication date: May 6, 2010
    Applicant: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, David Moy
  • Patent number: 7709221
    Abstract: The present invention relates to a biosensor comprising a substrate with a coating system in which a Ruthenium complex and an enzyme is integrated. The enzyme is able to convert bioproducts, e.g. glucose, fructose or glycerol. The depletion of oxygen during these converting reactions can be monitored via the fluorescence of the Ruthenium complex. The inventive biosensor can be used in biotechnological processes, e.g. the synthesis of biofuels.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: May 4, 2010
    Assignees: Fraunhofer Gesellschaft zur Forderung der angewandten Forschung e.V., Institute of Catalysis, Ecole Centrale de Lyon
    Inventors: Klaus Rose, Roberto Fernandez Lafuente, Jose Manuel Guisan, Lorena Betancor, Nicole Jaffrezic, Sergei Dzyadevych
  • Publication number: 20100086472
    Abstract: An activated catalyst capable of selectively growing single-walled carbon nanotubes when reacted with carbonaceous gas is provided. The activated catalyst is formed by reducing a catalyst that comprises a complex oxide. The complex oxide may be of formula Ax-wFwBy-vGvOz wherein x/y?2; z/y?4; 0?w?0.3x; 0?v?0.3y; A is a Group VIII element; F is an element that is different from A but has, in said composition, the same valence state as A; B is an element different from A and F, and is an element whose simple oxide, in which B is at the same valence state as in the complex oxide, is not reducible in the presence of hydrogen gas at a temperature less than about 900° C.; G is an element different from A, B and F, and is an element whose simple oxide, in which G is at the same valence state as in the complex oxide, is not reducible in the presence of hydrogen gas at a temperature less than about 900° C.; and O is oxygen. The complex oxide is reduced at a temperature less that 950° C.
    Type: Application
    Filed: November 20, 2006
    Publication date: April 8, 2010
    Applicant: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, David Moy
  • Publication number: 20100086471
    Abstract: The invention relates to carbon nanotube structures containing both single walled and multi walled carbon nanotubes, and methods for preparing same. These carbon nanotube structures include but are not limited to macroscopic two and three dimensional structures of carbon nanotubes such as assemblages, mats, plugs, networks, rigid porous structures, extrudates, etc. The carbon nanotube structures of the present invention have a variety of uses, including but not limited to, porous media for filtration, adsorption, chromatography; electrodes and current collectors for supercapacitors, batteries and fuel cells; catalyst supports, (including electrocatalysis), etc.
    Type: Application
    Filed: November 16, 2006
    Publication date: April 8, 2010
    Applicant: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, Alan Fischer, Robert Hoch
  • Patent number: 7674834
    Abstract: The invention concerns a colloidal dispersion of a vanadate or a phosphovanadate of at least a rare earth comprising either a complex-forming agent having a pK higher than 2.5, or an anion of a monovalent acid, soluble in water and having a pKa ranging between 2.5 and 5. The dispersion is obtained by contacting a colloidal dispersion or a dispersion of initial complexes comprising at least a rare earth compound and at least a complex-forming agent or an anion of said monovalent acid and whereof the pH has been adjusted to a value of at least 7, with vanadate ions, then, in adjusting the pH of the resulting medium to a value of at least 9 and heating.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: March 9, 2010
    Assignee: Rhodia Electronics & Catalysis
    Inventors: Jean-Yves Chane-Ching, Thierry Le Mercier
  • Patent number: 7625546
    Abstract: The invention relates to alkaline-earth or rare-earth metal aluminate precursor compounds, to their method of preparation and to their use in particular as phosphor precursors. These alkaline-earth or rare-earth metal aluminate precursor compounds are essentially crystallized in the form of a transition alumina and in the form of substantially spherical and chemically homogeneous particles including pores whose mean diameter is of at least 10 nm.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: December 1, 2009
    Assignee: Rhodia Electronics & Catalysis
    Inventors: Benjamin Delespierre, Cédric Froidefond, Thierry Le Mercier