Patents Assigned to Cellectis
  • Publication number: 20250129377
    Abstract: Materials and methods are provided for making plants (e.g., Triticum varieties) with increased levels of dietary fiber, such as by making TALE nuclease-induced mutations in alleles encoding starch branching enzyme IIa (SBEIIa) and starch branching enzyme IIb (SBEIIb).
    Type: Application
    Filed: June 18, 2024
    Publication date: April 24, 2025
    Applicant: Cellectis
    Inventors: Nicholas Baltes, Javier Gil Humanes
  • Publication number: 20240309397
    Abstract: Methods for developing engineered T-cells for immunotherapy that are both non-alloreactive and resistant to immunosuppresive drugs. The present invention relates to methods for modifying T-cells by inactivating both genes encoding target for an immunosuppressive agent and T-cell receptor, in particular genes encoding CD52 and TCR. This method involves the use of specific rare cutting endonucleases, in particular, TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection. of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: December 6, 2023
    Publication date: September 19, 2024
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 12012607
    Abstract: Materials and methods are provided for making plants (e.g., Triticum varieties) with increased levels of dietary fiber, such as by making TALE nuclease-induced mutations in alleles encoding starch branching enzyme IIa (SBEIIa) and starch branching enzyme IIb (SBEIIb).
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: June 18, 2024
    Assignee: Cellectis
    Inventors: Nicholas Baltes, Javier Gil Humanes
  • Patent number: 11959091
    Abstract: The present invention relates to methods of developing genetically engineered, preferably non-alloreactive T-cells for immunotherapy. This method involves the use of RNA-guided endonucleases, in particular Cas9/CRISPR system, to specifically target a selection of key genes in T-cells. The engineered T-cells are also intended to express chimeric antigen receptors (CAR) to redirect their immune activity towards malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer and viral infections.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: April 16, 2024
    Assignee: Cellectis
    Inventors: Philippe Duchateau, André Choulika, Laurent Poirot
  • Publication number: 20230357719
    Abstract: Methods of developing genetically engineered immune cells for immunotherapy, which can be endowed with Chimeric Antigen Receptors targeting an antigen marker that is common to both the pathological cells and said immune cells (ex: CD38, CSI or CD70) by the fact that the genes encoding said markers are inactivated in said immune cells by a rare cutting endonuclease such as TALEN, Cas9 or argonaute.
    Type: Application
    Filed: May 22, 2023
    Publication date: November 9, 2023
    Applicant: Cellectis
    Inventors: Philippe DUCHATEAU, Laurent POIROT
  • Patent number: 11624072
    Abstract: Materials and methods for creating canola (e.g., Brassica napus) lines having oil with increased oleic acid content are provided herein.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: April 11, 2023
    Assignee: Cellectis
    Inventors: Wenzheng Zhang, Feng Zhang
  • Patent number: 11498971
    Abstract: The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward selected membrane antigens, and more particularly in which extracellular ligand binding is a scFV derived from a BCMA monoclonal antibody, conferring specific immunity against BCMA positive cells. The engineered immune cells endowed with such CARs are particularly suited for treating lymphomas, multiple myeloma and leukemia.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: November 15, 2022
    Assignee: Cellectis
    Inventor: Roman Galetto
  • Publication number: 20220348955
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: June 24, 2022
    Publication date: November 3, 2022
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Publication number: 20220177914
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: February 17, 2022
    Publication date: June 9, 2022
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 11312972
    Abstract: Materials and methods are provided for making plants with altered levels of amino acids, particularly by making controlled frameshift mutations in genes that are highly expressed in plant leaves or plant seeds.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 26, 2022
    Assignee: Cellectis
    Inventors: Nicholas Baltes, Song Luo
  • Patent number: 11136566
    Abstract: The present invention relates to new Transcription Activator-Like Effector proteins and more particularly new Transcription Activator-Like Effector Nucleases (TALENs) that can efficiently target and process nucleic acids. The present invention also concerns methods to use these new Transcription Activator-Like Effector proteins. The present invention also relates to vectors, compositions and kits in which Transcription Activator-Like Effector proteins of the present invention are used.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: October 5, 2021
    Assignee: Cellectis
    Inventors: Philippe Duchateau, Alexandre Juillerat, Julien Valton, Claudia Bertonati, Jean-Charles Epinat, George H. Silva
  • Patent number: 11077144
    Abstract: The present invention relates to chimeric antigen receptors (CAR). CARs are able to redirect immune cell specificity and reactivity toward a selected target exploiting the ligand-binding domain properties. In particular, the present invention relates to a Chimeric Antigen Receptor in which extracellular ligand binding is a scFV derived from a CD19 monoclonal antibody, preferably 4G7. The present invention also relates to polynucleotides, vectors encoding said CAR and isolated cells expressing said CAR at their surface. The present invention also relates to methods for engineering immune cells expressing 4G7-CAR at their surface which confers a prolonged “activated” state on the transduced cell. The present invention is particularly useful for the treatment of B-cells lymphomas and leukemia.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: August 3, 2021
    Assignee: Cellectis
    Inventors: Roman Galetto, Julianne Smith, Andrew Scharenberg, Cécile Schiffer-Mannioui
  • Patent number: 11072644
    Abstract: The invention relates to an inhibitory chimeric antigen receptor (N-CAR) comprising an extracellular domain comprising an antigen binding domain, a transmembrane domain, and, an intracellular domain wherein the intracellular domain comprises an Immunoreceptor Tyrosine-based Switch Motif ITSM, wherein said ITSM is a sequence of amino acid TX1YX2X3X4, wherein X1 is an amino acid X2 is an amino acid X3 is an amino acid and X4 is V or I.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: July 27, 2021
    Assignees: Allogene Therapeutics, Inc., Cellectis
    Inventors: Arvind Rajpal, Shobha Chowdary Potluri, Laurent Poirot, Alexandre Juillerat, Thomas Charles Pertel, Donna Marie Stone, Barbra Johnson Sasu
  • Publication number: 20210220405
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 22, 2021
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 11014989
    Abstract: The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward CLL1 positive cells. The engineered immune cells endowed with such CARs are particularly suited for immunotherapy for treating cancer, in particular leukemia.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: May 25, 2021
    Assignee: Cellectis
    Inventors: Julianne Smith, Julien Valton, Alexandre Juillerat, Philippe Duchateau, Barbra Johnson Sasu, Arvind Rajpal
  • Publication number: 20210147868
    Abstract: The present invention relates to methods of developing genetically engineered, preferably non-alloreactive T-cells for immunotherapy. This method involves the use of RNA-guided endonucleases, in particular Cas9/CRISPR system, to specifically target a selection of key genes in T-cells. The engineered T-cells are also intended to express chimeric antigen receptors (CAR) to redirect their immune activity towards malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer and viral infections.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 20, 2021
    Applicant: Cellectis
    Inventors: Philippe DUCHATEAU, André CHOULIKA, Laurent POIROT
  • Patent number: 11007224
    Abstract: The present invention relates to chimeric antigen receptors (CAR). CARs are able to redirect immune cell specificity and reactivity toward a selected target exploiting the ligand-binding domain properties. In particular, the present invention relates to a Chimeric Antigen Receptor in which extracellular ligand binding is a scFV derived from a CD19 monoclonal antibody, preferably 4G7. The present invention also relates to polynucleotides, vectors encoding said CAR and isolated cells expressing said CAR at their surface. The present invention also relates to methods for engineering immune cells expressing 4G7-CAR at their surface which confers a prolonged “activated” state on the transduced cell. The present invention is particularly useful for the treatment of B-cells lymphomas and leukemia.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: May 18, 2021
    Assignee: Cellectis
    Inventors: Roman Galetto, Julianne Smith, Andrew Scharenberg, Cécile Schiffer-Mannioui
  • Publication number: 20200407682
    Abstract: Methods of developing genetically engineered immune cells for immunotherapy, which can be endowed with Chimeric Antigen Receptors targeting an antigen marker that is common to both the pathological cells and said immune cells (ex: CD38, CS1 or CD70) by the fact that the genes encoding said markers are inactivated in said immune cells by a rare cutting endonuclease such as TALEN, Cas9 or argonaute.
    Type: Application
    Filed: July 27, 2020
    Publication date: December 31, 2020
    Applicant: Cellectis
    Inventors: Philippe DUCHATEAU, Laurent POIROT
  • Patent number: 10874693
    Abstract: The present invention relates to chimeric antigen receptors (CAR). CARs are able to redirect immune cell specificity and reactivity toward a selected target exploiting the ligand-binding domain properties. In particular, the present invention relates to a Chimeric Antigen Receptor in which extracellular ligand binding is a scFV derived from a CD19 monoclonal antibody, preferably 4G7. The present invention also relates to polynucleotides, vectors encoding said CAR and isolated cells expressing said CAR at their surface. The present invention also relates to methods for engineering immune cells expressing 4G7-CAR at their surface which confers a prolonged “activated” state on the transduced cell. The present invention is particularly useful for the treatment of B-cells lymphomas and leukemia.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: December 29, 2020
    Assignee: Cellectis
    Inventors: Roman Galetto, Julianne Smith, Andrew Scharenberg, Cécile Schiffer-Mannioui
  • Patent number: 10815500
    Abstract: The present invention relates to Transcription Activator-Like Effector (TALE) derived proteins that allow efficient targeting and/or processing of double stranded nucleic acid sequences. The proteins of the invention are typically chimeric protein monomers composed of a core scaffold comprising Repeat Variable Dipeptide regions (RVDs) having binding specificity to a DNA target sequence, to which is fused a catalytic domain to its N-terminus. This later catalytic domain, which can be a monomer of a nuclease, is placed at this position to possibly interact with another catalytic domain fused to another TAL monomer, such that, when the monomers are binding to their respective target DNA sequences, both catalytic domains form a catalytic entity likely to process DNA in the proximity of these target sequences. This new TAL architecture makes it possible to target only one DNA strand, which is not the case, for instance, with classical TALEN architectures.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: October 27, 2020
    Assignee: Cellectis
    Inventors: Alexandre Juillerat, Philippe Duchateau