Patents Assigned to Cellectis
  • Publication number: 20230050345
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy that are non-alloreactive. The present invention relates to methods for modifying T-cells by inactivating both genes encoding T-cell receptor and an immune checkpoint gene to unleash the potential of the immune response. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: April 7, 2022
    Publication date: February 16, 2023
    Applicant: CELLECTIS
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cécile SCHIFFER-MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 11578318
    Abstract: An object of the invention is to provide an electroporation method for treating vesicles with exogenous material for insertion of the exogenous material into the vesicles which includes the steps of: a. retaining a suspension of the vesicles and the exogenous material in a treatment volume in a chamber which includes electrodes, wherein the chamber has a geometric factor (cm?1) defined by the quotient of the electrode gap squared (cm2) divided by the chamber volume (cm3), wherein the geometric factor is less than or equal to 0.1 cm?1, wherein the suspension of the vesicles and the exogenous material is in a medium which is adjusted such that the medium has conductivity in a range spanning 50 microSiemens/cm to 500 microSiemens/cm, wherein the suspension is enclosed in the chamber during treatment, and b. treating the suspension enclosed in the chamber with one or more pulsed electric fields.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: February 14, 2023
    Assignee: CELLECTIS S.A.
    Inventors: Richard E Walters, Alan D King
  • Patent number: 11576317
    Abstract: Materials and methods are provided for making plants (e.g., Nicotiana varieties) that are suitable for producing therapeutic polypeptides suitable for administration to humans and animals, particularly by making TAL effector endonuclease-induced mutations in genes encoding xylosyltransferases and fucosyltransferases.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: February 14, 2023
    Assignees: CELLECTIS SA, MEDICAGO INC.
    Inventors: Luc Mathis, Daniel F. Voytas, Jin Li, Feng Zhang, Thomas Stoddard, Marc-Andre D'Aoust
  • Patent number: 11555198
    Abstract: Materials and methods are provided for making plants (e.g., Nicotiana varieties) that are suitable for producing therapeutic polypeptides suitable for administration to humans and animals, particularly by making TAL effector endonuclease-induced mutations in genes encoding xylosyltransferases and fucosyltransferases.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: January 17, 2023
    Assignees: CELLECTIS SA, MEDICAGO INC.
    Inventors: Luc Mathis, Daniel F. Voytas, Jin Li, Feng Zhang, Thomas Stoddard, Marc-Andre D'Aoust
  • Patent number: 11498971
    Abstract: The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward selected membrane antigens, and more particularly in which extracellular ligand binding is a scFV derived from a BCMA monoclonal antibody, conferring specific immunity against BCMA positive cells. The engineered immune cells endowed with such CARs are particularly suited for treating lymphomas, multiple myeloma and leukemia.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: November 15, 2022
    Assignee: Cellectis
    Inventor: Roman Galetto
  • Publication number: 20220348955
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: June 24, 2022
    Publication date: November 3, 2022
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 11479782
    Abstract: Materials and methods for creating plants (e.g., alfalfa lines) with reduced lignin content and composition are provided herein, as are plants, plant parts, and plant cells generated by the methods provided herein.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: October 25, 2022
    Assignee: CELLECTIS
    Inventors: Song Luo, Nicholas J. Baltes
  • Patent number: 11466291
    Abstract: The invention pertains to the field of adaptive cell immunotherapy. It aims at reducing the occurrence of translocations and cell deaths when several specific endonuclease reagents are used altogether to genetically modify primary immune cells at different genetic loci. The method of the invention allows to yield safer immune primary cells harboring several genetic modifications, such as triple or quadruple gene inactivated cells, from populations or sub-populations of cells originating from a single donor or patient, for their subsequent use in therapeutic treatments.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: October 11, 2022
    Assignee: CELLECTIS
    Inventors: Jean-Pierre Cabaniols, Jean-Charles Epinat, Philippe Duchateau
  • Patent number: 11414674
    Abstract: A method of expanding deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: August 16, 2022
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Patent number: 11365430
    Abstract: The present invention relates to methods of developing genetically engineered, preferably non-alloreactive T-cells for immunotherapy. This method involves the use of RNA-guided endonucleases, in particular Cas9/CRISPR system, to specifically target a selection of key genes in T-cells. The engineered T-cells are also intended to express chimeric antigen receptors (CAR) to redirect their immune activity towards malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer and viral infections.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: June 21, 2022
    Assignee: CELLECTIS
    Inventors: Philippe Duchateau, André Choulika, Laurent Poirot
  • Publication number: 20220177914
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: February 17, 2022
    Publication date: June 9, 2022
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 11312972
    Abstract: Materials and methods are provided for making plants with altered levels of amino acids, particularly by making controlled frameshift mutations in genes that are highly expressed in plant leaves or plant seeds.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 26, 2022
    Assignee: Cellectis
    Inventors: Nicholas Baltes, Song Luo
  • Patent number: 11311575
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy and more specifically to methods for modifying T-cells by inactivating at immune checkpoint genes, preferably at least two selected from different pathways, to increase T-cell immune activity. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to highly efficient adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: April 26, 2022
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cécile Schiffer-Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Patent number: 11304975
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy that are non-alloreactive. The present invention relates to methods for modifying T-cells by inactivating both genes encoding T-cell receptor and an immune checkpoint gene to unleash the potential of the immune response. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: April 19, 2022
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cécile Schiffer-Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Patent number: 11274316
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: March 15, 2022
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Publication number: 20220033462
    Abstract: The invention relates to an inhibitory chimeric antigen receptor (N-CAR) comprising an extracellular domain comprising an antigen binding domain, a transmembrane domain, and, an intracellular domain wherein the intracellular domain comprises an Immunoreceptor Tyrosine-based Switch Motif ITSM, wherein said ITSM is a sequence of amino acid TX1YX2X3X4, wherein X1 is an amino acid X2 is an amino acid X3 is an amino acid and X4 is V or I.
    Type: Application
    Filed: July 26, 2021
    Publication date: February 3, 2022
    Applicants: ALLOGENE THERAPEUTICS, INC., CELLECTIS
    Inventors: ARVIND RAJPAL, Shobha Chowdary Potluri, Laurent Poirot, Alexandre Juillerat, Thomas Charles Pertel, Donna Marie Stone, Barbra Johnson Sasu
  • Publication number: 20220010292
    Abstract: The present invention relates to a method for the generation of compact Transcription Activator-Like Effector Nucleases (TALENs) that can efficiently target and process double-stranded DNA. More specifically, the present invention concerns a method for the creation of TALENs that consist of a single TALE DNA binding domain fused to at least one catalytic domain such that the active entity is composed of a single polypeptide chain for simple and efficient vectorization and does not require dimerization to target a specific single double-stranded DNA target sequence of interest and process DNA nearby the DNA target sequence. The present invention also relates to compact TALENs, vectors, compositions and kits used to implement the method.
    Type: Application
    Filed: September 29, 2021
    Publication date: January 13, 2022
    Applicant: CELLECTIS
    Inventors: Philippe Duchateau, Julien Valton, Claudia Bertonati, Jean-Charles Epinat, George H. Silva, Alexandre Juillerat, Marine Beurdeley
  • Patent number: 11220683
    Abstract: The present invention relates to polypeptides and more particularly to Transcription Activator-Like Effector derived proteins that allow to efficiently target and/or process nucleic acids. Particularly, the present invention reports the characterization of TALE derived proteins that can efficiently target methylated DNA. The present invention more specifically relates to TALE derived proteins that allow activation of methylated promoters responsible for gene silencing.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: January 11, 2022
    Assignee: CELLECTIS
    Inventors: Philippe Duchateau, Julien Valton
  • Patent number: 11198856
    Abstract: The present invention relates to a method for the generation of compact Transcription Activator-Like Effector Nucleases (TALENS) that can efficiently target and process double-stranded DNA. More specifically, the present invention concerns a method for the creation of TALENs that consist of a single TALE DNA binding domain fused to at least one catalytic domain such that the active entity is composed of a single polypeptide chain for simple and efficient vectorization and does not require dimerization to target a specific single double-stranded DNA target sequence of interest and process DNA nearby the DNA target sequence. The present invention also relates to compact TALENs, vectors, compositions and kits used to implement the method.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: December 14, 2021
    Assignee: CELLECTIS
    Inventors: Philippe Duchateau, Julien Valton, Claudia Bertonati, Jean-Charles Epinat, George H. Silva, Alexandre Juillerat, Marine Beurdeley
  • Patent number: 11186824
    Abstract: The present invention relates to methods for developing engineered immune cells such as T-cells for immunotherapy that have a higher potential of persistence and/or engraftment in host organism. IN particular, this method involves an inactivation of at least one gene involved in self/non self recognition, combined with a step of contact with at least one non-endogenous immunosuppressive polypeptide. The invention allows the possibility for a standard and affordable adoptive immunotherapy, whereby the risk of GvH is reduced.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: November 30, 2021
    Assignee: CELLECTIS
    Inventors: Philippe Duchateau, Jean-Pierre Cabaniols, Julien Valton, Laurent Poirot