Patents Assigned to CeramOptec Industries, Inc.
  • Patent number: 6918905
    Abstract: A handpiece for topical application of electromagnetic radiation is disclosed, consisting of a single monolithic transparent block covered by a semitransparent coating on the faces of the block not directed toward a treatment site. The block and coating are transparent to visible radiation, allowing the user a direct view of the treatment site. At the same time, for the safety of the user and a patient, the monolithic block has a coating of radiation blocking or absorbing material to selectively prevent treatment radiation from harming a user or patient. In a preferred embodiment, an optical fiber or fiber bundle coupled to a suitable power source is directly molded into the monolithic block. This invention is useful for a broad variety of laser applications, including the treatment of dermatological diseases and paint removal. The simple monolithic structure allows the device to be portable and practical in open environments.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: July 19, 2005
    Assignee: CeramOptec Industries, Inc.
    Inventor: Wolfgang Neuberger
  • Patent number: 6830580
    Abstract: The present invention provides a system and method for improved biostimulative effect through the use of single mode fibers to transport coherent light to a treatment site. Single mode fibers or groups/bundles of single mode waveguides for the relevant irradiation wavelength are used for radiation transport. Selective leakage of the radiation from this delivery system is achieved at the desired application sites of the biostimulation by suitable means, one being evanescent wave decouplers. The result is a low intensity exposure of coherent light to tissue or organic material that is more effective than conventional biostimulative procedures. Delivery systems based on such waveguides can cover large areas due to the low transmission losses of the waveguide. The waveguide can be inserted into hydrocultures or earth to provide radiation and thus biostimulation of seeds and cuttings in situ. Coherent radiation can also improve the health, healing and fertility of animals.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: December 14, 2004
    Assignee: CeramOptec Industries, Inc.
    Inventor: Wolfgang Neuberger
  • Patent number: 6821289
    Abstract: A safer, improved method of photodynamic therapy is provided for treating diseased, hyperproliferative tissue, including cancer, psoriasis, and arthritis, using multiple, sequential administrations of a photosensitizer (PS) prior to irradiation. Preferred photosensitizers are characterized by being retained in the diseased tissue for a longer time than in normal tissue. The interval between administrations is chosen to be of sufficient duration to allow the PS content of normal tissues to drop to a basal or negligible level before the next administration and before irradiation. At that time, the PS content of the diseased tissue is still high, not less than half of the initial content after the last PS administration. In this way, PDT with better selectivity for the diseased tissue is achieved. With sequential PS administrations, the PS burden on normal tissue can be kept low, so that side effects can be reduced, for example damage of the skin by sunlight or bright indoors artificial lighting.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: November 23, 2004
    Assignee: CeramOptec Industries, Inc.
    Inventors: Hans-Peter Bode, Volker Albrecht
  • Publication number: 20040227056
    Abstract: Briefly stated, the present invention discloses a novel device that automatically calibrates and adjusts the intensity, dosage, and other parameters of a radiation delivery system and radiation source based on selected or detected radiation delivery systems. Such radiation delivery systems include optical fiber systems, and any type of diffuser, as well as bare fiber tips. The functions of a radiation source and a calibration device are combined by storing the characteristics of a wide variety of delivery system types and brands and calibrating the radiation based on those stored characteristics. In a preferred embodiment, a calibration sheath is provided that fits over a delivery system, such as a bare fiber tip or a diffuser at the distal end of a fiber, to both protect the system during calibration and direct output radiation to a detector.
    Type: Application
    Filed: May 15, 2003
    Publication date: November 18, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventors: Wolfgang Neuberger, Stefan Spaniol
  • Publication number: 20040213524
    Abstract: A safe connection system for coupling radiation from radiation sources, such as lasers, into optical fibers is provided. The system prevents the accidental use of standard optical fibers with radiation sources that require fibers capable of transmitting high power or other radiation with unique characteristics. Because often the fibers for use with high power lasers, for example, may also be used with standard lasers, the system preserves the interchangeability of standard connection systems such as SMA by providing connectors that can properly fit both in standard receptacles and in the receptacles of the present invention. Thus, this connection system preserves the advantages of a standard laser-fiber connection system while increasing the safety of such systems, where it is necessary.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventors: Brian Foley, Wolfgang Neuberger, Heinrich Kudla, Stefan Spaniol
  • Publication number: 20040204704
    Abstract: An introducer and system and method for using the introducer in endoscopic combined laser assisted DCR for treatment of nasolachrymal drainage obstruction (NLDO) is disclosed. An introducer comprising a hollow outer tube and an atraumatic inner mandril is inserted into the lachrymal sac section. The atraumatic inner mandril is removed and (one or more) optical fibers or fiber bundles are inserted for illumination to determine proper position and for ablating a drainage channel. The fiber or bundle is then removed and a DCR intubation set can then be introduced to maintain the drainage channel. One advantage of this device and method is that all aspects of the procedure can be performed through the introducer, thus only requiring a single insertion point, reducing trauma to the lachrymal duct, and reducing the complexity and risk of complication or infection.
    Type: Application
    Filed: April 10, 2003
    Publication date: October 14, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventors: Paolo Tamplenizza, Walter Fontanella, Tiziano Caldera
  • Publication number: 20040199151
    Abstract: A system and method for controllably releasing laser radiation in percutaneous laser treatment is disclosed. In a preferred embodiment, an optical fiber is inserted below the skin or into a vascular lumen to a predetermined point. The fiber is connected to a source of electromagnetic radiation such as a laser. Radiation is then delivered to the treatment site while the fiber is simultaneously drawn out to the entry point. The fiber is manually withdrawn at a predetermined rate and radiation is administered in a constant power or energy level. To maintain a constant proper energy density, the speed of withdrawal is measured and sent to a controlling mechanism. The controlling mechanism modifies the power emitted, pulse length or pulse rate to ensure that the vein or tissue receives a consistent dose of energy. In one preferred embodiment, an imaging device provides the controlling device with speed information based on fiber surface textural properties or based on a series of bar code like markings.
    Type: Application
    Filed: April 3, 2003
    Publication date: October 7, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventor: Wolfgang Neuberger
  • Publication number: 20040193233
    Abstract: A safer, improved method of photodynamic therapy is provided for treating diseased, hyperproliferative tissue, including cancer, psoriasis, and arthritis, using multiple, sequential administrations of a photosensitizer (PS) prior to irradiation. Preferred photosensitizers are characterized by being retained in the diseased tissue for a longer time than in normal tissue. The interval between administrations is chosen to be of sufficient duration to allow the PS content of normal tissues to drop to a basal or negligible level before the next administration and before irradiation. At that time, the PS content of the diseased tissue is still high, not less than half of the initial content after the last PS administration. In this way, PDT with better selectivity for the diseased tissue is achieved. With sequential PS administrations, the PS burden on normal tissue can be kept low, so that side effects can be reduced, for example damage of the skin by sunlight or bright indoors artificial lighting.
    Type: Application
    Filed: March 25, 2003
    Publication date: September 30, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventors: Hans-Peter Bode, Volker Albercht
  • Publication number: 20040186285
    Abstract: Water-soluble mono-PEGylated tetrapyrrole derivatives are disclosed, having a formula given by formula 1, 2, or 3 in the specification. A method to produce the above water-soluble mono-PEGylated compounds is also disclosed, comprising an interaction of a tetrapyrrole with an aminopolyethylene glycol containing a functionalized terminal fragment, as well as their use as photosensitizers in photodynamic therapy.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 23, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventors: Nikolay E. Nifantiev, Dmitri V. Yashunsky
  • Publication number: 20040186087
    Abstract: Siderophore-photosensitizer conjugates, their synthesis and use in photodynamic antimicrobial therapy (PACT) is disclosed. The advantage of this method is improvement of photodynamic antimicrobial therapy against, for example, pathogenic micro-organisms such as bacteria and fungi. Naturally occurring and synthetically available siderophore structures are conjugated chemically with photoactive compounds such as Chlorin e6 to improve their penetration into bacterial cells and to increase antibacterial efficacy of photosensitizers via microbial proteins that recognize and transport iron-loaded siderophores. In this way, photosensitizers can be transported inside bacteria that otherwise could not cross the cell wall and membranes. Photodynamic activation of photosensitizers inside the cells of pathogenic microbes enables a more effective inhibition of cellular functions than application at the outer side of the cells.
    Type: Application
    Filed: March 20, 2003
    Publication date: September 23, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventors: Susanna Grafe, Peter Gebhardt, Volker Albrecht
  • Patent number: 6777402
    Abstract: High purity pharmaceutical-grade water-soluble porphyrin derivatives given by formula 1 or 2 in the specification, and new methods to prepare and use such porphyrin derivatives are disclosed. A preferred method comprises the steps of one- or two-step direct acidic alcoholysis of biological raw material producing a crystalline alkyl pheophorbide, conversion of the obtained alkyl pheophorbide into an acidic porphyrin, and reaction of the acidic porphyrin in water or in an aqueous organic solution with a hydrophilic organic amine. Another preferred method comprises reaction of acidic porphyrins prepared in water or in aqueous organic solution with a hydrophilic organic amine. Another preferred method comprises the additional step of purification of the resultant water-soluble porphyrin derivative by reversed phase chromatography using volatile solvents.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: August 17, 2004
    Assignee: CeramOptec Industries, Inc.
    Inventors: Nikolay E. Nifantiev, Dmitri V. Yashunsky
  • Publication number: 20040156401
    Abstract: An optical fiber is disclosed that can be used as an active medium in fiber lasers and/or fiber amplifiers, featuring a preferably rare-earth-doped silica active core surrounded by a pure or doped silica cladding layer (“pump core”). The pump core is surrounded by a doped or pure silica inner cladding for guiding pumping radiation within the pump core. Thus, the refractive index of the inner cladding is lower than that of the pump core. The fiber is surrounded by a protective coating made of polymeric material. One or more additional outer cladding layers, having refractive indexes lower than said inner cladding, may optionally be placed between the inner cladding and the protective coating to further protect the polymer coating from damage. Unlike the prior art, the protective coating does not serve as the only cladding, but is assisted by the inner cladding and optional outer cladding(s).
    Type: Application
    Filed: December 11, 2003
    Publication date: August 12, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventors: Thomas Sandrock, Sonja Unger, Alexander Harschack, Volker Reichel
  • Publication number: 20040151430
    Abstract: An illuminating emergency device or system having indicators that effectively communicate escape routes in highly dangerous industrial environments and commercial safety systems is disclosed. An optical fiber is manufactured in a way to emit controlled and patterned radiation along its length. This is realized by coupling a predefined amount of radiation guided by the fiber per length unit out of the fiber core into the cladding and jacket. The present invention advances a concept of partially illuminating fibers, especially partially illuminating fibers providing one or more illumination colors and illuminating fibers capable of changing illumination color to indicate the status of an emergency route. The invention further provides the inclusion of novel fiber lasers for illumination purposes and methods to obtain a relatively homogeneous illumination at the diffusion sites, as well as discreet illumination patterns.
    Type: Application
    Filed: February 3, 2003
    Publication date: August 5, 2004
    Applicant: CeramOptec Industries Inc.
    Inventor: Wolfgang Neuberger
  • Patent number: 6758844
    Abstract: A system and method is disclosed for improved treatment of oral tissues using 980 nm laser radiation and a handpiece with means for concurrently delivering the laser radiation and a liquid/gas spray onto the treatment area to improve the treatment effects. Unwanted heating and carbonization of surrounding tissues is reduced. The liquid/gas spray may be mixed inside the handpiece or in a separate device. The combination of cooling sprays with radiation wavelengths having high absorption in water has previously been avoided due to the thought that energy absorption by the cooling fluid would render the energy delivered to the tissue uncontrollable and of minimal benefit. Preferably, pulsed laser light provides a localized energy deposition and heating to avoid unwanted heating of underlying tissue. The liquid spray flushes away tissue debris in addition to cooling the treated tissue.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: July 6, 2004
    Assignee: CeramOptec Industries, Inc.
    Inventor: Wolfgang Neuberger
  • Publication number: 20040122419
    Abstract: A medical radiation treatment system is disclosed for identifying and monitoring the use of disposable or reusable optical fibers or other optical accessories. The treatment system comprises a radiation source unit connected to a recognition/control unit, and a medical radiation delivery system connected to an identification/recordation unit. This forms a read-write system to ensure that radiation parameters conform to delivery device characteristics, and to prevent the use of overused or incompatible delivery devices. This is achieved by reading previously encoded information in the identification/recordation unit that provides all usage history, including number of uses or total duration of use. The encoded information is updated after use, and preferably frequently or continuously during use, to guarantee a complete usage history even after an incomplete treatment.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 24, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventor: Wolfgang Neuberger
  • Publication number: 20040116909
    Abstract: A laser device and method for treating ophthalmic diseases is enclosed. The device comprises a system for irradiating the eye with electromagnetic irradiation with a wavelength in the range of 654-681 nm. The system preferably comprises a laser source and ancillary equipment to direct and regulate the radiation. The use of this wavelength range makes the device effective for a wide variety of ophthalmic indications. It is capable of providing photocoagulation treatments for diseases such as glaucoma, diabetic retinopathy and age-related macular degeneration. The system is also useful for photodynamic therapy. Also disclosed are laser diodes with high beam quality and slit lamp adaptors to further enhance the versatility of the system.
    Type: Application
    Filed: December 11, 2002
    Publication date: June 17, 2004
    Applicant: CeramOptec Industries Inc.
    Inventors: Wolfgang Neuberger, Detlev Berndt, Julian Maughan
  • Publication number: 20040078068
    Abstract: The present invention provides a system and method for improved biostimulative effect through the use of low mode/oligomode fibers to transport coherent light to a treatment site. Oligomode fibers or groups/bundles of oligomode waveguides for the relevant irradiation wavelength are used for radiation transport. Selective leakage of the radiation from this delivery system is achieved at the desired application sites of the biostimulation by suitable means, one being evanescent wave decouplers. The result is a low intensity exposure of coherent light to tissue or organic material that is more effective than conventional biostimulative procedures. Delivery systems based on such waveguides can cover large areas due to the low transmission losses of the waveguide. The waveguide can be inserted into hydrocultures or earth to provide radiation and thus biostimulation of seeds and cuttings in situ. Coherent radiation can also improve the health, healing and fertility of animals.
    Type: Application
    Filed: July 10, 2003
    Publication date: April 22, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventor: Wolfgang Neuberger
  • Patent number: 6724963
    Abstract: The present invention provides for an apparatus and method to manufacture optical fiber in a way that produces controlled and patterned diffusion of optical radiation along its length. The novelty of the described invention is that the patterns of diffusion are produced at the time the optical fiber is manufactured. The “in-line” manufacturing method avoids the need for post-production treatment of the fiber, which makes the process highly efficient and economical. Light diffusing optical fibers of significant length can be produced. Several manufacturing configurations to achieve the desired effects and their inclusion in the fiber production process are described. The processes can be configured to process optical fibers constructed from a wide variety of known glass, polymeric or other materials. The partially diffusing optical fibers of this invention have applications ranging from illuminated fabrics and toys and to lighting systems and medical instruments.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: April 20, 2004
    Assignee: CeramOptec Industries, Inc.
    Inventor: Wolfgang Neuberger
  • Publication number: 20040059399
    Abstract: A waveguide and radiation delivery system is disclosed to be used in topical applications of photodynamic therapy. One preferred embodiment consists of a rectangular waveguide that delivers electromagnetic radiation to a flexible conducting sheet that can be molded to the contours of the treatment sight. The sheet is surrounded by a reflective material or foil, except for the portion of the sheet in contact with the treatment area. That portion is covered with a semi-reflective sheet that is at least translucent with respect to the wavelength used in the treatment. This invention increases the speed and efficiency of the procedure by reducing energy loss due to reflection from the skin surface. It also increases safety by protecting sensitive areas of the body, and is particularly useful for head and neck procedures. Other embodiments include the use of a bladder-type applicator or a rectangular applicator designed to keep the optical fiber a specified distance from the treatment site.
    Type: Application
    Filed: September 25, 2002
    Publication date: March 25, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventor: Wolfgang Neuberger
  • Publication number: 20040052798
    Abstract: A method and composition is disclosed for treating oral diseases, including inflammatory periodontal disease, by utilizing photosensitizing compounds in long term effect or timed release formulations, including local highly concentrated formulations in biofilms on teeth and implants and oral wounds as well as periodontal pockets, and activating the photosensitizers with radiation to selectively destroy bacteria and other microbial bodies. Photosensitizers in a timed release formulation are released over a prolonged period of time. In a version, photosensitizers are housed within nanoparticles, and can be gradually released through biodegradation or periodically released by such processes as brushing, irradiation, ultrasonic and chemically induced release. The formulation is applied to the oral cavity and allowed to settle on biofilms therein, in periodontal pockets formed by disease, or coated at the desired sites.
    Type: Application
    Filed: September 12, 2002
    Publication date: March 18, 2004
    Applicant: CeramOptec Industries, Inc.
    Inventor: Wolfgang Neuberger