Abstract: Seismic exploration of an underground formation uses seismic excitations to probe the formation's properties such as reflectivity that can be imaged using reverse time migration. Using an equal area spherical binning at reflection points improves and simplifies RTM imaging together with adaptability to the data acquisition geometry, while overcoming drawbacks of conventional cylindrical binning.
Abstract: Seismic data is deblended by performing, for each receiver, a first inversion and a second inversion in a transform domain. The first inversion is formulated to minimize a number of non-zero coefficients of the first inversion result. A sub-domain of the transform domain is defined by vectors of a transform domain basis for which the first inversion has yielded the non-zero coefficients. The second inversion is performed in this sub-domain. The solution of the second inversion is used to extract deblended seismic datasets corresponding to each of the distinct signals, from the seismic data.
Type:
Grant
Filed:
December 14, 2015
Date of Patent:
October 11, 2022
Assignee:
CGG SERVICES SAS
Inventors:
Matthieu Guillouet, Anne Berthaud, Thomas Bianchi
Abstract: Well completion is accomplished by obtaining a sample of geological material from the subsurface and generating primary data for the sample of geological material. The primary data include textural data, chemical data and mineralogical data. The primary data are used to derive secondary data for the sample of geological material, and the primary data and the secondary data are used to generate tertiary data for the sample of geological material. The tertiary data are a quantification of physical characteristics of the sample of geological material. The primary data, secondary data and tertiary data are used to determine a location of a stage along a well and an arrangement of perforation clusters in the stage.
Abstract: An exploration method starts from cuttings associated with sampling intervals and well data for a well in a subsurface formation. The cuttings are prepared and analyzed to extract textural and chemical/mineralogical data for plural fragments in each sample that is made of the cuttings in one sampling interval. The method then includes matching lithotypes of rock defined according to the textural and chemical/mineralogical data for each fragment with segments of the well data in the corresponding sampling interval to obtain correspondences between the lithotypes and depth ranges. The correspondences between the lithotypes and the depth ranges may be used as constraints for seismic data inversion.
Abstract: Computing device, computer instructions and method process input seismic data d recorded in a first domain by seismic receivers that travel in water, the input seismic data d including pressure and particle motion measurements, including up-going and down-going wave-fields. A model p is generated in a second domain by solving an inverse problem for the input seismic data d, wherein applying an L transform to the model p describes the input data d. An L? transform, which is different from the L transform, is then applied to the model p to obtain an output seismic data in the first domain, the output seismic data having a characteristic imparted by the transform L?. The characteristic is related to pressure wave-fields and/or particle motion wave-fields interpolated at positions in-between the input seismic receivers. An image of the surveyed subsurface is generated based on the output seismic dataset.
Abstract: Methods and apparatuses characterize fracture orientations in orthorhombic adjacent layer. Seismic data with azimuthal coverage enables calculating Fourier coefficients of reflectivity at an interface between the orthorhombic adjacent layers. The phases of 2nd and 4th FCs may be used to infer the fracture orientations in the orthorhombic adjacent layers. Analysis of 2nd and 4th Fourier coefficients' phases for different incidence angles may indicate that the fracture orientations in the orthorhombic adjacent layers are aligned, orthogonal, at 45°, that one of the layers is isotropic, etc.
Abstract: Computing device, computer instructions and method for processing energy at a free-surface reflection relating to an air-water interface. The method includes receiving input seismic data recorded with seismic sensors; receiving wave-height data that describes an actual shape of a top surface of a body of water; processing up-going energy at a receiver and down-going energy following a reflection at the sea-surface, using the input seismic data and a linear operator modified to take into account the wave-height data; and generating an image of the subsurface based on the up-going energy or the down-going energy or a combination of the input seismic data and one of the up-going or down-going energy.
Abstract: A seismic exploration method includes performing a true amplitude PSDM based on an initial velocity model of a subsurface formation to obtain a reflectivity model, and then a Born modeling using the reflectivity model to generate synthetic data. An image-based reflection full waveform inversion is applied to a cost function of differences between seismic data acquired over the subsurface formation and the synthetic data to update the initial velocity model. The updated velocity model enables exploring the presence of and/or assisting in the extraction of natural resources from the subsurface formation.
Type:
Grant
Filed:
November 15, 2018
Date of Patent:
June 7, 2022
Assignee:
CGG SERVICES SAS
Inventors:
Min Wang, Yi Xie, Xiaodong Wu, Dechun Lin
Abstract: A system and method are disclosed for predicting, and optionally removing surface multiples from acquired seismic data that lacks surface consistency, such as seismic data acquired using an Ocean Bottom Cable (OBC) or Ocean Bottom Node (OBN) system where the sources are located at or near the water's surface and the receivers are located at or near the ocean's floor. By processing the acquired seismic data using seismic interferometry, source side and/or receiver side operators can be generated which satisfy the surface consistency requirement of techniques such as Surface Related Multiple Elimination (SRME) so that SRME or the like can be used to predict the surface multiples.
Abstract: A method for de-blending seismic data associated with an interface located in a subsurface of the earth, includes receiving blended seismic data E generated by firing N source arrays according to a pre-determined sequence Seq; selecting N sub-datasets SDn from the blended seismic data E; interpolating each selected sub-dataset SDn to reference positions ref, where the blended seismic data E is expected to be recorded, to generate interpolated data k; de-blending, in a processor, the interpolated data k to generate de-blended data o; and generating an image of the interface of the subsurface based on the de-blended data o.
Abstract: The orientation of the symmetry axis of an underground formation including an HTI layer is determined by comparing azimuthal Fourier coefficient of inversion results in distinct source-receiver azimuth ranges with values expected from the HTI assumption. A branch-stacking technique or prior knowledge may be used to select one of the anisotropy axis orientation values.
Abstract: Methods and apparatuses for processing seismic data acquired with multicomponent sensors build an accurate S-wave velocity model of a surveyed underground formation using a full waveform inversion (FWI) approach. PS synthetic data is generated using approximative acoustic equations in anisotropic media with a P-wave model, a current S-wave velocity model and a reflectivity model as inputs. The current S-wave velocity model is updated using FWI to minimize an amplitude-discrepancy-mitigating cost function that alleviates the amplitude mismatch between the PS observed data and the PS synthetic data due to the use of the approximative acoustic equations.
Type:
Grant
Filed:
May 8, 2020
Date of Patent:
January 4, 2022
Assignee:
CGG SERVICES SAS
Inventors:
Min Wang, Yi Xie, Tengfei Wang, Adriano Gomes
Abstract: PP and PS seismic data are jointly inverted in a stratigraphic grid, using different time axes for PP and PS reflections. A ratio of PP and of PS waves'travel times inside a same layer cell maintained to be a function of a ratio of a P-wave propagation velocity and of an S-wave propagation velocity therein. Since PP and PS seismic amplitudes and travel times are due to elastic properties of the same structure, they can be inverted at the same time to provide better estimates of these elastic properties.
Abstract: Computing device, computer instructions and method for identifying seismic traces prone to cycle-skipping in a full waveform inversion method. The method includes receiving recorded seismic data recorded with seismic sensors over a subsurface of interest; selecting a model that describes the subsurface; calculating, based on the model and the recorded seismic data, estimated seismic data; and choosing a probabilistic measure that characterizes a relationship between the recorded seismic data and the estimated seismic data. The probabilistic measure includes at least one statistical function.
Type:
Grant
Filed:
January 9, 2015
Date of Patent:
November 16, 2021
Assignee:
CGG SERVICES SAS
Inventors:
Luis D'Afonseca, Alejo Sansigre, Andrew Ratcliffe, Hongbo Bi, Tao Lin
Abstract: Computing device, computer instructions and method for removing cross-talk noise from seismic data and generating an image of a surveyed subsurface. The method includes receiving input seismic data D generated by firing one or more seismic sources so that source energy is overlapping, and the input seismic data D is recorded with seismic sensors over the subsurface; generating a cross-talk noise model N by replacing at least one original shot gather with a reconstructed shot gather; subtracting the cross-talk noise model N from the input seismic data D to attenuate coherent cross-talk noise to obtain processed seismic data Dp; deblending the processed seismic data Dp with a deblending algorithm to attenuate a residual noise to obtain deblended seismic data Dd; and generating the image of the subsurface based on the deblended seismic data Dd.
Type:
Grant
Filed:
November 20, 2017
Date of Patent:
November 9, 2021
Assignee:
CGG SERVICES SAS
Inventors:
Thomas Elboth, Jamshade Khan, Honglei Shen, Tran Thinh To
Abstract: A non-blended dataset related to a same surveyed area as a blended dataset is used to deblend the blended dataset. The non-blended dataset may be used to calculate a model dataset emulating the blended dataset, or may be transformed in a model domain and used to derive sparseness weights, model domain masking, scaling or shaping functions used to deblend the blended dataset.
Type:
Grant
Filed:
December 14, 2015
Date of Patent:
September 7, 2021
Assignee:
CGG SERVICES SAS
Inventors:
Gordon Poole, Henning Hoeber, Adel Khalil
Abstract: A system and method of interpolating seismic data is provided. The system and method form a plurality of pairwise Hankel tensors from acquired seismic data, and a respective pairwise Hankel tensor for each of a plurality of originally collected frequency slices, perform tensor completion on each of said pairwise Hankel tensors to recover a plurality of interpolated frequency slices, and combine said plurality of interpolated frequency slices with said originally collected frequency slices to form a set of trace data of a geographical area of interest.
Abstract: Methods and devices use improved FWI techniques for seismic exploration of subsurface formations including salt bodies using a travel-time cost function. In calculating the travel-time cost function, time-shifts may be weighted using cross-correlation coefficients of respective time-shifted recorded data and synthetic data generated based on current velocity model. The improved methods enhance the resulting image while avoiding cycle-skipping and issues related to amplitude difference between synthetic and recorded data.
Abstract: Methods and apparatuses for seismic exploration of an underground structure obtain improved images by integrating partial match filtering in an FWI. Filtered (auxiliary) data replaces one of the observed data and the synthetic data in the FWI's objective function to avoid cycle skipping.
Type:
Grant
Filed:
June 26, 2020
Date of Patent:
April 13, 2021
Assignee:
CGG SERVICES SAS
Inventors:
James Cooper, Andrew Ratcliffe, Gordon Poole
Abstract: A multi-sensor electromagnetic (EM) system and method for measuring gradients of EM signals. The multi-sensor EM system includes a frame; a transmitter device attached to the frame and configured to generate a primary EM field; a receiver device attached to the frame and configured to record a secondary EM field generated by the earth after being excited by the primary EM field; and a gradient sensor device attached to the frame and configured to record a gradient of the secondary EM field.