Patents Assigned to China Petro-Chemical Corporation
  • Patent number: 7323434
    Abstract: An electropositive and water-based production well treating fluid system exhibits electropositivity by using a cationic viscosifier meanwhile matched with a cationic fluid loss additive and, optionally, contains a mud-building agent, an electrical stabilizing agent, a colloid-stabilizing agent, lubricant, an oil layer protective agent and/or a weighting agent. The electropositive production well treating fluid can beffer solve the contradiction of technical requirements between “treating fluid stability” and “bore hole stability”, and features a strong ability to inhibit the dispersion of clay, a good effect of protecting oil-gas reservoirs, fast drilling speeds, regular shape of bore holes and good resistance to salt.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: January 29, 2008
    Assignees: China Petroleum & Chemical Corporation, Exploration & Production Research Insitute, SINOPEC, China Petro-Chemical Corporation Shengli Petroleum Administrative Bureau
    Inventors: Changming Su, Rushan Liu, Weiping Xu, Zengchen Guan, Peizhi Yu, Xiushan Liu, Jiafen Li, Baoyu Guo, Yingchun Cui, Caixuan Guo, Jing Li
  • Patent number: 6828267
    Abstract: Described are a MgCl2 based carrier containing Ti(OR)4 and ROH, wherein R is C1˜C7alkyl, and solid catalyst components made from said carrier. The carrier and the solid catalyst components according to the present invention are characterized in that their X-rays powder diffraction spectra, one or two main diffraction lines or a halo appears at 2&thgr; of 2˜14° and in the range of 2&thgr; of 14˜50°, there are the characteristic diffraction lines of anhydrous &agr;-MgCl2. The carrier according to the present invention is directly obtained by reacting anhydrous magnesium chloride with an alcohol and can be used to prepare solid catalyst components without dealcoholization, and the solid catalyst components exhibit high polymerization activity when employed for polymerizing ethylene.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: December 7, 2004
    Assignees: China Petro Chemical Corporation, Research Institute of Petroleum Processing Sinopec
    Inventors: Zhenhua Jing, Rong Junfeng, Wei Zhang, Xiaoyu Hong, Xuhua Zhou
  • Patent number: 6790343
    Abstract: The present invention relates to a sulfur transfer additive for catalytic cracking of hydrocarbons and a catalytic cracking process of hydrocarbons using the sulfur transfer additive, said additive is a uniform liquid comprising at least two metal elements selected from the following three classes: a). alkaline earth metals, b). transition metals and P zone metals, and c). rare earth metals, and wherein there are at least two metal elements from the different classes. The present sulfur transfer additive can reduce the SOx content in the regenerator flue gas and the sulfur content in the light oil products at the same time, and has no negative effect on the activity and selectivity of the catalyst in the FCC system.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: September 14, 2004
    Assignees: China Petro-chemical Corporation, Luoyang Petro-chemical Engineering Corporation, Sinopec
    Inventors: Longyan Wang, Haiqing Guo, Wenyi Qi, Shuqin Su, Xianliang Deng, Jinlong Liu, Shufang Liu
  • Patent number: 6716405
    Abstract: A process for removing unreacted ammonia from an effluent of a catalyst bed used in a hydrocarbon ammoxidation reaction is provided. The process includes a step of providing a fluidized bed reactor. The reactor includes the catalyst bed for reacting ammonia and hydrocarbons therein. The reactor also includes a dilute phase of the catalyst bed disposed above the catalyst bed. The reactor further includes a set of internals disposed at least partially within the dilute phase of the catalyst bed. The reactor additionally includes an inlet of a first-stage cyclone separator disposed above the set of internals. The process also includes a step of removing the unreacted ammonia from the effluent of the catalyst bed by passing the effluent through the set of internals. The ammonia and hydrocarbons present in the effluent contact the dilute phase of the catalyst bed and react therein.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: April 6, 2004
    Assignees: China Petro-Chemical Corporation, Shanghai Research Institute of Petrochemical Technology, SINOPEC
    Inventors: Xin Chen, Linghua Wu
  • Patent number: 6703339
    Abstract: A catalyst component for the (co)polymerization of olefins is provided. The catalyst comprises titanium, magnesium halogen and a mixed electron-donor and a catalyst for the (co)polymerization of olefins comprising:(A) the catalyst component; (B) an organic aluminum compound; and (C) an organic silicon compound. A polymer with high and adjustable stereospecificity and broad molecular weight distribution can be prepared by using the catalyst.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: March 9, 2004
    Assignees: China Petro-Chemical Corporation, Beijing Research Institute of Chemical Industry, Sinopec
    Inventors: Zhulan Li, Juxiu Yang, Mingzhi Gao, Yun Zhao, Bingquan Mao, Aichun Yang, Chunmin Ding, Wenbo Song, Kunzheng Liu
  • Patent number: 6689870
    Abstract: Protein macromolecular dyes, A(B)b are disclosed, wherein A are protein macromolecules including natural protein macromolecules and modified natural protein macromolecules such as casein, gelatin and fur-protein; B are dyes including azo dyes, azo metal complex dyes and anthraquinone dyes which can react with the amino groups of the natural and modified protein macromolecules; b are integers between 1˜2500. The protein macromolecular dyes have excellent properties of crosslinking ability, better dyeing fastness, fixation ration than conventional dyes and the function of normal macromolecules such as compatibility, abilities of filling and forming membranes. They may be used in dyeing protein materials such as leather, wool and silk.
    Type: Grant
    Filed: July 16, 1998
    Date of Patent: February 10, 2004
    Assignees: China Petro-Chemical Corporation, Dalian University of Technology
    Inventors: Jinzong Yang, Shufen Zhang
  • Patent number: 6683017
    Abstract: A catalyst system for the (co)polymerization of propylene contains (A) a solid catalyst component comprising titanium, magnesium, halogen and a 1,3-diether; (B) an organic aluminum compound; and optionally (C) an organic silicon compound. In comparison with the prior art, stereospecificity of the polymer prepared by using the catalyst system of this invention evenl containing no external electron-donor is greater than 99%. Also, the activity of the catalyst system and hydrogen gas adjustability on the molecular weight of the polymer do not significantly decrease.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: January 27, 2004
    Assignees: China Petro - Chemical Corporation, Beijing Research Institute of Chemical Industry
    Inventors: Mingzhi Gao, Jian Zhou, Yun Zhao, Zhulan Li, Yantoo Yang, Juxiu Yang, Weihua Feng
  • Patent number: 6677263
    Abstract: Disclosed is a catalytic promoter for fluid catalytic cracking of hydrocarbons, comprising a HZSM-5 zeolite in an amount of 5-65 wt % based on the total weight of the catalytic promoter, said zeolite being modified with Zn and at least one element selected from the group consisting of P, Ga, Al, Ni and rare earth elements, the combined amount of said modifying elements being 0.01-10.37 wt % based on total weight of said modified HZSM-5 zeolite. A reduced olefin content in gasoline from catalytic cracking process, an increased gasoline octane number and an increased lower olefin yield can be obtained using said catalytic promoter.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: January 13, 2004
    Assignees: China Petro Chemical Corporation, Luoyang Petro-Chemical Engineering Corporation SINOPEC
    Inventors: Longyan Wang, Xiaobo Wei, Danhe Liu, Daijun Hao, Jinlong Liu, Xuhui Gong
  • Patent number: 6627578
    Abstract: A catalyst for selective hydrogenation, which comprises, on the basis of the total weight of catalyst, 1-30 wt % of copper as the first active component, 0.001-5 wt % of palladium as the second active component, 0.001-6 wt % of at least one metal selected from Ag, Pt, Pb, Mn, Co, Ni, Cr, Bi, Zr and Mo as cocatalyst, and the balance of at least one support selected from alumina, silica or titania. The present invention further relates to its preparation, its use in removal of alkynes from alkyne-enriched C4 cuts through selective hydrogenation and its regeneration.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: September 30, 2003
    Assignees: China Petro-Chemical Corporation, Beijing Research Institute of Chemical Industry
    Inventors: Liying Xu, Yunxian Zhu, Yi Yue, Lingke Kong, Shusheng Gao
  • Patent number: 6617278
    Abstract: The present invention provides a catalyst system and processes for preparing the system for use in ethylene polymerization and copolymerization. The catalyst system is obtained by dissolving any electron-donor activator and optionally, a metal halide adjusting agent, into a solution of magnesium halide in a solvent system consisting essentially of organic epoxy compounds and organic phosphorous compounds to form a homogeneous solution. At least one coprecipitator and a titanium halide or its derivative is then mixed to form a solid component, followed by incorporating in combination with an organic aluminum component prior to use in polymerizations. The electron donor activator is an ether or alcohol, and the coprecipitator is an organic acid, anhydride, ether, or ketone.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: September 9, 2003
    Assignees: China Petro-Chemical Corporation, China Petro-Chemical Corporation Beijing Research Institute of Chemical Industry
    Inventors: Maozhu Jin, Yijing Sun, Yi Wang, Rengi Peng, Baolan Zhu, Zhaowen Ma
  • Patent number: 6596897
    Abstract: A fluidized-bed catalyst for producing acrylonitrile by the ammoxidation of propylene, which comprises a silica carrier and a composite having the following formula: AaCcDdNafFegBihMiMo12Ox wherein A selected from the group consisting of potassium, rubidium, cesium, samarium, thallium and mixtures thereof; C is selected from the group consisting of phosphorus, arsenic, boron, antimony, chromium and mixtures thereof; D is selected from nickel, cobalt or mixtures thereof; M is selected from tungsten, vanadium or mixtures thereof. The catalyst of the present invention particularly suits the use under higher pressure and higher duties, and still maintains very high single-pass yield of acrylonitrile and a high ammonia conversion. This catalyst particularly suits the requirement for existing acrylonitrile plants to raise capacity. For new plants it can also reduce the investment on the catalyst and the pollution.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: July 22, 2003
    Assignees: China Petro-Chemical Corporation, Research Institute of Petroleum Processing
    Inventors: Xingya Guan, Xin Chen, Lianghua Wu
  • Patent number: 6538078
    Abstract: The present invention relates to a highly active titanium based supported catalyst suitable for olefin (co)polymerization, preparation and use of the same. The catalyst according to the present invention is obtained by supporting a titanium based catalyst component containing a halide promoter on spherical silica. The resultant catalyst is excellent in its particle morphology and flowability, has highly catalytic activity, has excellent hydrogen response and has superior comonomer incorporation, the polymer prepared by using such a catalyst has its particle morphology further improved.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: March 25, 2003
    Assignees: China Petro-Chemical Corporation, Beijing Research Institute of Chemical Industry Sinopec
    Inventors: Hekuan Luo, Ruiguo Tang, Hua Yang, Qinfang Zhao
  • Patent number: 6530422
    Abstract: A heat exchanger tube, having at least one twisted baffle therein, each of said twisted baffles extends in the inside of the heat exchanger tube along the axis thereof, said twisted baffles extends as long as at least a part of the entire length of said heat exchanger tube, and said twisted baffles are integrated with the inner surface of said heat exchanger tube. The twisted angle of said twisted baffles is between 100° to 360°. The ratio between the axial length of said heat exchanger tube with the twisted angle 180° of said twisted baffles and the internal diameter of said heat exchanger tube is 2 to 3. The thickness of said twisted baffles is approximated to that of said heat exchanger tube; in every cross section of said heat exchanger tube, the transition zone from the surface of said twisted baffles to the surface of said heat exchanger tube, and vice versa, is in the shape of a concave circular arc.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: March 11, 2003
    Assignees: China Petro-Chemical Corporation, Institute of Metal Research Science Academy of China, China Petro-Chemical Corporation Beijing Research Intitute of Chemical Industry
    Inventors: Yaoxiao Zhu, Zhi Zheng, Qingquan Zeng, Ning Xiuzhen, Lou Langhong, Shiqun Xu, Guoqing Wang, Qingju Bai
  • Patent number: 6500997
    Abstract: The present invention relates a catalyst for the conversion of aromatic hydrocarbons, comprising by weight 20 to 90 parts of a crystalline aluminosilicate zeolite with a SiO2/Al2O3 molar ratio of 10 to 100, 0.05 to 10 parts of metal bismuth or oxides thereof supported on the zeolite, 0 to 5 parts of one or more types of metal(s) M or oxides thereof, M being selected from the group consisting of molybdenum, copper, zirconium, strontium, lanthanum, rhenium, iron, cobalt, nickel and silver, and 10 to 60 parts of alumina as an adhesive. The present invention also relates to a process for the conversion of aromatic hydrocarbons using the catalyst of the present invention and uses thereof in the production of aromatic hydrocarbons.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: December 31, 2002
    Assignees: China Petro-Chemical Corporation, Shanghai Research Institute of Petrochemical Engineering
    Inventors: Wencai Cheng, Dejin Kong, Deqin Yang, Huaying Li, Zhirong Zhu
  • Patent number: 6459008
    Abstract: A selective hydrogenation catalyst system, and a process for its preparation and its use. The catalyst system of the invention comprises a support material, a Pd-containing catalyst component and a Bi-containing cocatalyst component. The catalyst system of the invention is manufactured by impregnating the support material simultaneously or separately with Pd-containing solution, Bi-containing solution or/and one or more other cocatalyst solutions, and then drying and calcining. The activity and selectivity of the catalyst system of the invention, in selective hydrogenation of acetylenic and diolefmic compounds in hydrocarbon feeds, are significantly improved, while the green oil formation and carbon deposit on the catalyst reduced, and the service life increased and production costs decreased.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: October 1, 2002
    Assignees: China Petro-Chemical Corporation, Beijing Research Institute of Chemical Industry, Sinopec
    Inventors: Wei Dai, Jing Zhu, Helong Li, Yanlai Guo, Wei Mu, Hui Peng, Xin Chen
  • Patent number: 6423760
    Abstract: The present invention provides a fully vulcanized powdery rubber having a particle size of from 20 to 2000 nm, its preparation and use. The vulcanized powdery rubber is obtained by irradiating a rubber latex having a particle size of from 20 to 2000 nm with a high-energy irradiation. The vulcanized powdery rubber is very easily to be dispersed into various plastics, and thus can be mixed with various plastics to prepare toughened plastics and fully valcanized thermoplastic elastomers.
    Type: Grant
    Filed: October 30, 2000
    Date of Patent: July 23, 2002
    Assignees: China Petro-Chemical Corporation, Beijing Research Institute of Chemical Industry, Sinopec
    Inventors: Jinliang Qiao, Genshuan Wei, Xiaohong Zhang, Shijun Zhang, Jianming Gao, Wei Zhang, Yiqun Liu, Jiuqiang Li, Fengru Zhang, Renli Zhai, Jingbo Shao, Kunkai Yan, Hua Yin
  • Patent number: 6420307
    Abstract: The present invention relates to a new fluidized-bed catalyst used in a process of propylene ammoxidation to acrylonitrile. The catalyst comprises a silica as carrier and a composition represented by the following general formulas: AaBbCcGedNaeFefBigMohOx Wherein A represents at least one element selected from a group consisting Li,K,Rb,Cs,Sm, In or Tl; B represents at least one element selected from a group consisting of P, Sb, Cr, W. Pr, Ce, As, B, Te, Ga, Al, Nb, Th, La or V; C represents one element selected from a group consisting of Ni, Co, Sr, Mn, Mg, Ca, Zn, Cd or Cu and the mixture thereof; a is a number of from 0.01 to 1.5; b is a number of from 0.01 to 3.0; c is a number of from 0.1 to 12.0; preferably from 2 to 10; d is a number of from 0.01 to 2.0; preferably from 0.01 to 1.0; e is a number of from 0.01 to 0.7; preferably from 0.05 to 0.5; f is a number of from 0.1 to 8; preferably from 1.0 to 3.0; g is a number of from 0.01 to 6; preferably from 0.1 to 2.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: July 16, 2002
    Assignee: China Petro-Chemical Corporation
    Inventors: Lianghua Wu, Guojun Wang, Xin Chen
  • Publication number: 20020035028
    Abstract: Described are a MgCl2 based carrier containing Ti(OR)4 and ROH, wherein R is C1˜C7alkyl, and solid catalyst components made from said carrier. The carrier and the solid catalyst components according to the present invention are characterized in that in their X-rays powder diffraction spectra, one or two main diffraction lines or a halo appears at 2&thgr; of 2˜14° and in the range of 2&thgr; of 14˜50°, there are the characteristic diffraction lines of anhydrous &agr;-MgCl2. The carrier according to the present invention is directly obtained by reacting anhydrous magnesium chloride with an alcohol and can be used to prepare solid catalyst components without dealcoholization, and the solid catalyst components exhibit high polymerization activity when employed for polymerizing ethylene.
    Type: Application
    Filed: May 18, 2001
    Publication date: March 21, 2002
    Applicant: China Petro Chemical Corporation
    Inventors: Zhenhua Jing, Rong Junfeng, Wei Zhang, Xiaoyu Hong, Xuhua Zhou
  • Patent number: 6345811
    Abstract: A vapor-liquid contacting tower having a tray deck, at least one downcomer and a structure packing layer in the space under the vapor-liquid bubble contacting tray wherein the tray deck has an opening such that vapor ascends upward through the opening to come into contact with the liquid flowing across the tray deck to form a froth in which the vapor and the liquid on the tray deck creates cross-flow bubble contact and with the structural dimensions of the tray deck and downcomer providing for at least 90 vol % of the total liquid flowing across the tray deck flows downwardly through the downcomer to the adjacent deck.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: February 12, 2002
    Assignees: China Petro-Chemical Corporation, Zhejiang University of Technology
    Inventors: Xiaomei Yu, Jun Tian, Jiazhong Zhu, Ou Li, Zuming Zheng, Kejian Yao
  • Publication number: 20020007941
    Abstract: A heat exchanger tube, having at least one twisted baffle therein, each of said twisted baffles extends in the inside of the heat exchanger tube along the axis thereof, said twisted baffles extends as long as at least a part of the entire length of said heat exchanger tube, and said twisted baffles are integrated with the inner surface of said heat exchanger tube. The twisted angle of said twisted baffles is between 100° to 360°. The ratio between the axial length of said heat exchanger tube with the twisted angle 180° of said twisted baffles and the internal diameter of said heat exchanger tube is 2 to 3. The thickness of said twisted baffles is approximated to that of said heat exchanger tube; in every cross section of said heat exchanger tube, the transition zone from the surface of said twisted baffles to the surface of said heat exchanger tube, and vice versa, is in the shape of a concave circular arc.
    Type: Application
    Filed: September 25, 2001
    Publication date: January 24, 2002
    Applicant: CHINA PETRO-CHEMICAL CORPORATION
    Inventors: Yaoxiao Zhu, Zhi Zheng, Qingquan Zeng, Ning Xiuzhen, Lou Langhong, Shiqun Xu, Guoqing Wang, Qingju Bai