Patents Assigned to Chrysler LLC
  • Publication number: 20090118901
    Abstract: A method to monitor integrity of a motor torque command for a transmission in a hybrid powertrain system includes calculating motor torque commands for the torque generating machines. Torque corrections for the motor torque commands are determined. The motor torque commands are adjusted based upon the torque corrections. The adjusted motor torque commands are verified based upon an estimated output torque.
    Type: Application
    Filed: October 6, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: William R. Cawthorne, Hanne Buur, Paul A. Stanowski
  • Publication number: 20090118922
    Abstract: Methods and systems for manipulating inputs relating to transmission shifting events in a hybrid-engine powered vehicle equipped with an electro-mechanical hybrid transmission include sets of preferability factors inputted from engine sensors are combined in a microprocessor or computer with other preferability factors generated during engine and vehicle operation to provide an output for a transmission control module, which may execute an operating range or engine state change. Desirable input speeds for a transmission are determined by defining minimum input speeds for each potential transmission operating range state, and ascribing biasing costs to potential transmission input speeds which are slower than the minimum input speeds defined for each potential transmission operating range state.
    Type: Application
    Filed: September 23, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Kee Yong Kim
  • Publication number: 20090118938
    Abstract: A powertrain system includes an engine coupled to an input member of a transmission device operative to transmit torque between the input member and a torque machine and an output member. The torque machine is connected to an energy storage device. A method for controlling a powertrain system includes monitoring a temperature of the energy storage device, selecting a candidate powertrain system operating point, determining an output power from the energy storage device associated with the candidate powertrain system operating point, determining a power loss for operating the powertrain system at the candidate powertrain system operating point, and determining operating costs for operating the powertrain system at the candidate powertrain system operating point associated with the power loss and based upon the temperature of the energy storage device.
    Type: Application
    Filed: October 19, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventor: Anthony H. Heap
  • Publication number: 20090118877
    Abstract: Short term power limits of an electrical energy storage device are progressively tightened toward long term power limits in accordance with net energy flow or magnitude or duration metrics.
    Type: Application
    Filed: September 18, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Marc B. Center, William R. Cawthorne
  • Publication number: 20090118930
    Abstract: A method for controlling a powertrain system including a transmission mechanically coupled to an engine and an electric machine to transfer power to an output member, the transmission selectively operative in one of a plurality of operating range states includes monitoring operator inputs to an accelerator pedal, determining a preferred operating point of the powertrain based upon the operator inputs, determining a preferred operating range state of the transmission based upon the preferred operating point, determining lead control signals for the engine and the transmission based upon the preferred operating point and the preferred operating range state of the transmission, determining immediate control signals for the electric machine and the transmission, wherein the immediate control signals are based upon a lead period calibrated to a difference in control signal reaction times of the engine and the electric machine in order to effect changes to an actual electric machine output substantially simultaneou
    Type: Application
    Filed: October 13, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Lawrence A. Kaminsky, Jy-Jen F. Sah
  • Publication number: 20090115377
    Abstract: A method of externally charging a powertrain includes monitoring a voltage level of a first battery, determining when the monitored voltage level is below a first voltage threshold, and when the monitored voltage level is below the first voltage threshold, charging the first battery by supplying power from an external power source and increasing voltage of the power supplied by the external power source within the powertrain.
    Type: Application
    Filed: October 20, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: R. Travis Schwenke, Nicholas Kokotovich, Aniket Kothari, Mario V. Maiorana, JR., William R. Cawthorne
  • Publication number: 20090118999
    Abstract: A method for operating an engine includes defining a two-dimensional search region based upon an input power transmittable between the internal combustion engine and an electromechanical transmission. The method further includes iteratively dividing the two-dimensional search region into a plurality of subregions based upon one of the input power and the input speed, iteratively determining an engine operating point within each of the subregions, iteratively calculating an operating cost to operate the internal combustion engine and the electromechanical transmission to meet the operator torque request for each engine operating point within each of the subregions, and iteratively identifying the subregion having a minimum operating cost to meet the operator torque request. A preferred engine operating point is determined based upon the engine operating point within the identified subregion having the minimum operating cost to meet the operator torque request.
    Type: Application
    Filed: September 29, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Bin Wu, Wilfried Brunssen, Jason J. McConnell, Kee Yong Kim, Brian R. Medema
  • Publication number: 20090118928
    Abstract: An internal combustion engine is mechanically coupled to a hybrid transmission to transmit mechanical power to an output member. A method for controlling the internal combustion engine includes determining an accelerator output torque request based upon an operator input to the accelerator pedal, and determining an axle torque response type. A preferred input torque from the engine to the hybrid transmission is determined based upon the accelerator output torque request. An allowable range of input torque from the engine which can be reacted with the hybrid transmission is determined based upon the accelerator output torque request and the axle torque response type. The engine is controlled to meet the preferred input torque when the preferred input torque is within the allowable range of input torque from the engine. The engine is controlled within the allowable range of input torque from the engine when the preferred input torque is outside the allowable range of input torques from the engine.
    Type: Application
    Filed: October 10, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengessellschaft
    Inventors: Anthony H. Heap, Wilfried Brunssen
  • Publication number: 20090118089
    Abstract: A powertrain system includes an engine mechanically coupled to an electromechanical transmission selectively operative in one of a plurality of transmission operating range states and one of a plurality of engine states. A method for controlling the powertrain system includes determining a current transmission operating range state and engine state, determining at least one potential transmission operating range state and engine state, determining preferability factors associated with the current and potential transmission operating range state and the engine state wherein the preferability factors associated with potential transmission operating range states include load-stabilizing preferability factors, preferentially weighting the preferability factors for the current transmission operating range state and engine state, and selectively commanding changing the present transmission operating range state and engine state based upon the preferability factors.
    Type: Application
    Filed: September 23, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Kee Yong Kim
  • Publication number: 20090115349
    Abstract: An electro-mechanical transmission is operative to transmit mechanical torque originating from an engine and first and second electric machines to an output member. The electric machines are electrically-operatively connected to an energy storage system for electrical power flow therebetween. A Method for operating the electro-mechanical transmission includes operating the electro-mechanical transmission in a fixed gear operating range state, determining a minimum power flow between the energy storage system and the first and second electric machines to meet an operator torque request based upon electrical power constraints and motor torque constraints, commanding a motor torque from the first electric machine based upon the minimum power flow, and commanding a motor torque from the second electric machine based upon the minimum power flow, a torque input from the engine and the commanded motor torque from the first electric machine to meet the operator torque request in the fixed gear operating range state.
    Type: Application
    Filed: October 13, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventor: Anthony H. Heap
  • Publication number: 20090118948
    Abstract: A powertrain system includes an engine mechanically coupled to an electro-mechanical transmission selectively operative in one of a plurality of transmission operating range states and one of a plurality of engine states. A method for controlling the powertrain system includes determining a current transmission operating range state and engine state, determining at least one potential transmission operating range state and engine state, providing an operator torque request, determining preferability factors associated with the current transmission operating range state and engine state, and potential transmission operating range states and engine states, preferentially weighting the preferability factors for the current transmission operating range state and engine state, and selectively commanding changing the current transmission operating range state and engine state based upon the preferability factors and the operator torque request.
    Type: Application
    Filed: September 24, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Kee Yong Kim, Jason J. Mcconnell
  • Publication number: 20090118931
    Abstract: A method to control a powertrain including a transmission, an engine, and an electric machine includes monitoring an input speed, monitoring an output speed, upon initiation of a transmission shift, determining a plurality of input acceleration profiles for controlling the engine and electric machine during the shift, identifying an input acceleration constraint affecting one of the input acceleration profiles, reprofiling the input acceleration profiles based upon the identified input acceleration constraint, and controlling operation of the engine and electric machine based upon the reprofiled input acceleration profiles.
    Type: Application
    Filed: October 13, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Lawrence A. Kaminsky, Jy-Jen F. Sah
  • Publication number: 20090118081
    Abstract: A method for controlling a powertrain system includes controlling a first power actuator based upon a set of power constraints for the first power actuator. The method further includes controlling a second power actuator based upon the set of power constraints for the second power actuator.
    Type: Application
    Filed: October 1, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, William R. Cawthorne
  • Publication number: 20090118085
    Abstract: A powertrain includes an engine coupled to an input member of a hybrid transmission. The hybrid transmission is operative to transfer power between an input member and a plurality of torque machines and an output member. A method for controlling the powertrain includes, monitoring operation of the hybrid transmission, determining motor torque offsets for the torque machines, transforming the motor torque offsets for the torque machines to an input torque offset and an output torque offset of the hybrid transmission, and adjusting operation of the engine based upon the input torque offset and the output torque offset of the hybrid transmission.
    Type: Application
    Filed: October 15, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventor: Anthony H. Heap
  • Publication number: 20090118951
    Abstract: A powertrain system includes an engine mechanically coupled to an electro-mechanical transmission selectively operative in one of a plurality of transmission operating range states and one of a plurality of engine states. A method for controlling the powertrain system includes determining a current transmission operating range state and engine state, determining at least one potential transmission operating range state and engine state, determining preferability factors associated with the current and potential transmission operating range state and the engine state wherein the preferability factors associated with potential transmission operating range states include transmission input speed trip preferability factors, preferentially weighting the preferability factors for the current transmission operating range state and engine state, and selectively commanding changing the present transmission operating range state and engine state based upon the preferability factors.
    Type: Application
    Filed: September 24, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler llc, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Kee Yong Kim, Jason J. Mcconnell
  • Publication number: 20090118943
    Abstract: A hybrid transmission is operative to transfer torque between an input member and torque machines and an output member in one of a plurality of fixed gear and continuously variable operating range states through selective application of torque transfer clutches. The torque machines are operative to transfer power from an energy storage device. A method for controlling the hybrid transmission includes operating the hybrid transmission in one of the operating range states, determining a first set of internal system constraints on output torque transferred to the output member, determining a second set of internal system constraints on the output torque transferred to the output member, and determining an allowable output torque range that is achievable within the first set of internal system constraints and the second set of internal system constraints on the output torque transferred to the output member.
    Type: Application
    Filed: October 21, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Tung-Ming Hsieh, Bin Wu
  • Publication number: 20090118936
    Abstract: A powertrain includes an electromechanical transmission mechanically-operatively coupled to an internal combustion engine and an electric machine adapted to selectively transmit mechanical power to an output member through selective application of a plurality of clutches. A method for controlling the powertrain includes commanding a shift from a fixed gear operating range state to a second operating range state, commanding decreased reactive torque through an off-going clutch during a torque phase of said commanded shift, and decreasing said reactive torque through said off-going clutch through control of engine input torque.
    Type: Application
    Filed: October 16, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Jy-Jen F. Sah, Lawrence A. Kaminsky
  • Publication number: 20090118074
    Abstract: A powertrain includes an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and an electric machine to selectively transmit mechanical power to an output member. Powertrain operation includes monitoring operator inputs, and determining input speeds and changes in input speeds for the internal combustion engine and the electric machine. The input speeds are compared to threshold input speeds, and the changes in input speeds are compared to threshold changes in input speeds. Input torques of the internal combustion engine and the electric machine are reduced when any one of the input speeds and changes in input speeds exceeds the corresponding threshold.
    Type: Application
    Filed: September 18, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Andrew M. Zettel, Charles J. Van Horn, Peter E. Wu, Ryan D. Martini, Anthony H. Heap
  • Publication number: 20090115408
    Abstract: A rotatable shaft is equipped with a measurement device that generates output signals corresponding to discrete angular positions of the shaft. Rotational angles of the shaft are measured for a complete rotational period. A true angular velocity of the shaft is determined. Angular velocity is calculated between contiguous pairs of the discrete angular positions. A velocity correction is determined, and a rotational angle error term is determined based upon the velocity correction.
    Type: Application
    Filed: October 6, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Stephen T. West, Sean E. Gleason
  • Publication number: 20090118940
    Abstract: An engine is selectively operative in one of a plurality of engine states to transfer torque to an input member of a hybrid transmission. The hybrid transmission is operative to transfer torque between the input member and a torque machine and an output member to generate an output torque in response to an operator torque request. A method for controlling the engine includes monitoring the operator torque request, determining operating power costs associated with a plurality of candidate engine states in response to the operator torque request, determining transition costs for transitioning the engine from a present engine state to each of the candidate engine states, determining stabilization costs for operating the engine in the present engine state and subsequently operating the engine in each of the candidate engine states, and selecting a preferred engine state based upon the operating power costs, the transition costs, and the stabilization costs for the plurality of engine states.
    Type: Application
    Filed: October 20, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Wilfried Brunssen, Scott J. Thompson