Patents Assigned to CIRCUIT THERAPEUTICS, INC.
  • Publication number: 20170319715
    Abstract: One embodiment is directed to a method for altering the function of the sensory unit that innervates a targeted tissue region in a mammal comprising the steps of identifying the targeted tissue region; cutaneously administering into the targeted tissue region an adeno-associated virus wherein the viral genome encodes at least one exogenous protein; expressing the exogenous protein in the targeted sensory unit; and altering the function of the targeted sensory unit to treat or restore the sensory response because of the exogenous protein expression while not impacting the function of nearby sensory units.
    Type: Application
    Filed: February 8, 2017
    Publication date: November 9, 2017
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Christopher L. Towne, Dan Andersen
  • Publication number: 20170239488
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: March 28, 2017
    Publication date: August 24, 2017
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, Dan Andersen, Joyce Huang, David C. Lundmark, David Moore
  • Publication number: 20170225008
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: March 29, 2017
    Publication date: August 10, 2017
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, Dan Andersen, Joyce Huang, David C. Lundmark, David Moore
  • Publication number: 20170225009
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Scott Delp, Karl Deisseroth, Dan Andersen
  • Publication number: 20170225013
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: April 3, 2017
    Publication date: August 10, 2017
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Scott Delp, Karl Deisseroth, Dan Andersen
  • Publication number: 20170205595
    Abstract: Configurations are described for creating and using separable optical feedthroughs. These are especially useful in their at least semi-hermetic form when integrated with implantable photomedical devices. One embodiment is directed to a system for operatively coupling an optical output from a light source positioned inside of a sealed housing to an external optical fiber, comprising: a first optical fiber disposed adjacent to the light source and configured to receive at least a portion of the optical output; a second optical fiber operatively coupled to the first optical fiber and configured to capture at least a portion of an output from the first optical fiber; a primary seal operatively coupled to the housing between the light source and the second optical fiber that is at least partially transparent; and a secondary seal positioned between the second optical fiber and the environment.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, David Angeley, Brian Andrew Ellingwood
  • Publication number: 20170182191
    Abstract: One embodiment is directed to a method for controllably managing pain in the afferent nervous system of a patient having a targeted tissue structure that has been genetically modified to have light sensitive protein, comprising: providing a light delivery element configured to direct radiation to at least a portion of a targeted tissue structure, a light source configured to provide light to the light delivery element, and a controller operatively coupled to light source, wherein the targeted tissue structure comprises a sensory neuron of the patient; and automatically operating the controller to illuminate the targeted tissue structure with radiation such that a membrane potential of cells comprising the targeted tissue structure is modulated at least in part due to exposure of the light sensitive protein to the radiation.
    Type: Application
    Filed: July 29, 2015
    Publication date: June 29, 2017
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Christopher L. Towne, Michael Kaplitt, Scott Delp, Karl Deisseroth, David Angeley, Greg Stahler, Dan Andersen, David C. Lundmark
  • Patent number: 9662508
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: May 30, 2017
    Assignee: Circuit Therapeutics, Inc.
    Inventors: Scott Delp, Karl Deisseroth, Dan Andersen
  • Patent number: 9649503
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: May 16, 2017
    Assignee: Circuit Therapeutic, Inc.
    Inventors: Scott Delp, Karl Deisseroth, Dan Andersen
  • Patent number: 9645332
    Abstract: Configurations are described for creating and using separable optical feedthroughs. These are especially useful in their at least semi-hermetic form when integrated with implantable photomedical devices. One embodiment is directed to a system for operatively coupling an optical output from a light source positioned inside of a sealed housing to an external optical fiber, comprising: a first optical fiber disposed adjacent to the light source and configured to receive at least a portion of the optical output; a second optical fiber operatively coupled to the first optical fiber and configured to capture at least a portion of an output from the first optical fiber; a primary seal operatively coupled to the housing between the light source and the second optical fiber that is at least partially transparent; and a secondary seal positioned between the second optical fiber and the environment.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: May 9, 2017
    Assignee: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, David Angeley, Brian Andrew Ellin
  • Publication number: 20160096035
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: July 28, 2014
    Publication date: April 7, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander Arrow
  • Publication number: 20160096034
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: July 28, 2014
    Publication date: April 7, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander Arrow
  • Publication number: 20160091680
    Abstract: Configurations are described for creating and using separable optical feedthroughs. These are especially useful in their at least semi-hermetic form when integrated with implantable photomedical devices. One embodiment is directed to a system for operatively coupling an optical output from a light source positioned inside of a sealed housing to an external optical fiber, comprising: a first optical fiber disposed adjacent to the light source and configured to receive at least a portion of the optical output; a second optical fiber operatively coupled to the first optical fiber and configured to capture at least a portion of an output from the first optical fiber; a primary seal operatively coupled to the housing between the light source and the second optical fiber that is at least partially transparent; and a secondary seal positioned between the second optical fiber and the environment.
    Type: Application
    Filed: July 29, 2015
    Publication date: March 31, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, David Angeley, Brian Andrew Ellin
  • Publication number: 20160082279
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: July 28, 2014
    Publication date: March 24, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Dan Andersen, Joyce Huang, Greg Stahler, David C. Lundmark
  • Publication number: 20160059030
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: July 31, 2014
    Publication date: March 3, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Joyce Huang, Dan Andersen, David Angeley
  • Publication number: 20160051830
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 25, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Dan Andersen, Joyce Huang, Greg Stahler, David C. Lundmark, David Angeley, David Moore
  • Publication number: 20160051838
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 25, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, Ananya Mitra, Joyce Huang, Dan Andersen, Alexander Arrow, David Moore
  • Publication number: 20160051836
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: July 28, 2014
    Publication date: February 25, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander Arrow
  • Publication number: 20160051828
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 25, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, Dan Andersen, Joyce Huang, David C. Lundmark, David Moore
  • Publication number: 20160051831
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 25, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Fred Moll, Alexander Arrow