Abstract: Provided is an LED package which is unlikely to cause the attenuation of emitted light from an LED element by bonding wires for electrical connection of the LED element. The LED package includes a board including a pair of connection electrodes formed thereon, an LED element mounted on the board, a bonding wire electrically connecting the LED element to the pair of connection electrodes, and a covering layer containing a phosphor and covering the bonding wire, wherein the phosphor is excited by emitted light from the LED element to emit light having an absorbance in the bonding wire lower than that of the emitted light and a wavelength longer than that of the emitted light.
Abstract: A semiconductor device wherein the horizontal spreading of solder at the time of reflow is suppressed and a plurality of devices can be mounted close to each other on a substrate, and a light-emitting apparatus using such a semiconductor device as a light-emitting device are provided. A semiconductor device bonded to a substrate by solder includes a semiconductor layer, a plurality of device electrodes formed on a bottom surface of the semiconductor layer, and a plurality of auxiliary electrodes formed integrally with the device electrodes, respectively, wherein each of the auxiliary electrodes includes a groove portion formed in a bottom surface thereof, and a side face of the groove portion is slanted with respect to the bottom surface of the semiconductor layer so that the groove portion becomes narrower in width with increasing distance from a lower end of the auxiliary electrode and decreasing distance to an upper end thereof.
Abstract: To provide an LED lighting apparatus and a method for manufacturing the same that can improve the bonding strength between an aluminum substrate and a printed wiring substrate. An LED lighting apparatus and a method for manufacturing the same, the LED lighting apparatus includes an aluminum substrate, a plurality of reflectivity-enhanced layers formed on the aluminum substrate, an LED device bonded on said plurality of reflectivity-enhanced layers, a printed wiring substrate bonded onto a region on the aluminum substrate other than a region where the plurality of reflectivity-enhanced layers are formed, a wire for connecting between the printed wiring substrate and the LED device, a frame member formed so as to surround said LED device, and a phosphor resin deposited over a region inside the frame member.
Abstract: The purpose of the present invention is to provide an LED driving circuit with which it is possible to easily manage the color temperature by adjusting light.
Abstract: A substrate includes a first electrode layer including a first electrode and a second electrode; a second electrode layer including a first electrode and a second electrode; a third electrode layer including a first electrode and a second electrode; and a resin layer. The first electrode layer is arranged on a first side of the resin layer, the third electrode layer is arranged on a second side of the resin layer opposed to the first side, the second electrode layer is positioned in the resin layer, and the first electrode layer is thicker than the second electrode layer. The first and second electrodes of the first electrode layer are positioned inside a peripheral edge of the first side of the resin layer, and the first and second electrodes of the third electrode layer are positioned inside a peripheral edge of the second side of the resin layer.
Abstract: A light-emitting device in which the emission intensity of light-emitting elements is improved by making heat generated by light emission of the light-emitting elements be effectively released is provided. The light-emitting device includes a mounting substrate including a mounting region, light-emitting elements mounted on the mounting region, a sealing resin which contains a phosphor and integrally seals the light-emitting elements, and at least one heat transfer member which is arranged among the light-emitting elements on the mounting region, is embedded in the sealing resin, and has a higher thermal conductivity than the sealing resin.
Abstract: In a first aspect of the present inventive subject matter, a light-emitting device includes a substrate; a light-emitting element electrically connected to the substrate and arranged in a light-emitting area that is positioned on an upper surface of the substrate; and an electronic part that is electrically connected to the substrate and arranged outside the light-emitting area on the upper surface of the substrate, the electronic part obliquely protruding from an edge of the upper surface of the substrate.
Abstract: Provided is a light-emitting module that achieves high brightness, whose electrode structure is simple and whose brightness distribution has rotational symmetry. The light-emitting module includes a substrate, a first electrode and a second electrode disposed on the substrate, LED devices connected between the first electrode and the second electrode, a dam member disposed on the substrate so as to surround the LED devices, and a phosphor-containing resin for sealing the LED devices by being filled into a region surrounded by the dam member on the substrate. The first electrode includes a first outer electrode disposed under the dam member and a first inner electrode disposed nearer to a center of the substrate than the first outer electrode is. The second electrode includes a second outer electrode disposed under the dam member and a second inner electrode disposed nearer to the center of the substrate than the second outer electrode is.
Abstract: An object of the present invention is to provide a light-emitting device that can implement a natural, vivid, highly visible and comfortable appearance of colors and appearance of objects as if the objects are seen outdoors, and to provide a light-emitting device that can change the appearance of colors of the illuminated objects so as to satisfy the requirements for various illuminations, and a method for designing thereof. Another object of the present invention is to improve the appearance of colors of a light-emitting device which currently exists or is in use, and which includes a semiconductor light-emitting device of which appearance of colors is not very good. Moreover, another object of the present invention is to provide a method for driving the light-emitting device, an illumination method by the device, and a method for manufacturing the light-emitting device.
Abstract: To provide an illumination method and a light-emitting device which are capable of achieving, under an indoor illumination environment where illuminance is around 5000 lx or lower when performing detailed work and generally around 1500 lx or lower, a color appearance or an object appearance as perceived by a person, will be as natural, vivid, highly visible, and comfortable as though perceived outdoors in a high-illuminance environment, regardless of scores of various color rendition metric. Light emitted from the light-emitting device illuminates an object such that light measured at a position of the object satisfies specific requirements. A feature of the light-emitting device is that light emitted by the light-emitting device in a main radiant direction satisfies specific requirements.
Abstract: In a first aspect of the present invention, a lighting device (100) includes a first light emitter (1) that includes a first light-emitting element (10) with a p-n junction (10g), and a first side cover (11) partly covering a peripheral side surface (10c-10f) of the first light-emitting element (10); a second light emitter (2) that includes a second light-emitting element (20) with a p-n junction (20g) and a second side cover (21) partly covering a peripheral side surface (20c-20f) of the second light-emitting element (20), and the first light emitter (1) and the second light emitter (2) are disposed to face each other at uncovered side portions (10c, 20c) that are uncovered by the first side cover (11) and the second side cover (21). It is disclosed that the first side cover (11) covers a quarter or more area of the peripheral side surface (10c-10f) of the first light-emitting element (10).
Abstract: Provided is an LED module which, even when CSP LED devices are arrayed adjacent to each other, emits light at a light emission color of a single LED device and is bright. An LED module includes a module substrate, first LED devices having a lateral surface which is configured of an optically transmissive face, and second LED devices having a lateral surface which is configured of a light blocking face. The first LED devices are mounted upon the module substrate adjacent to the second LED devices such that the translucent faces of the first LED devices and the light blocking faces of the second LED devices are in opposition.
Abstract: An LED module includes, on a circuit board, first to fourth electrodes, a first circuit including a first LED group, and a second circuit including second and third LED groups, a switch element and a detection element. The second circuit includes a first path leading from the second LED group to one end of the detection element, and a second path leading from the third LED group via the switch element to one end of the detection element. The first and second electrodes are connected to the first circuit, the third electrode is connected to the second and third LED groups, and the fourth electrode is connected to the other end of the detection element. The threshold voltage for light emission of the second LED group is larger than that of the third LED group. The switch element controls a current flowing through the second path in accordance with a current flowing via the detection element.