Patents Assigned to Clean Diesel Technologies, Inc.
  • Publication number: 20160121309
    Abstract: Effect of the type of material composition employed within overcoat in conjunction with ZPGM composition in impregnation layer on thermal stability and TWC performance of ZPGM catalyst systems is disclosed. Effect of aging temperature on thermal stability of disclosed ZPGM catalyst systems is also described. Testing of ZPGM catalyst samples including isothermal steady state sweep test condition and isothermal oscillating TWC test on disclosed ZPGM catalyst systems show that ZPGM catalyst system that includes combination of Cu1Mn2O4 spinel and YMnO3 perovskite exhibit higher level of thermal stability at temperature higher than temperatures registered for under floor application of TWC.
    Type: Application
    Filed: October 30, 2014
    Publication date: May 5, 2016
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20160082422
    Abstract: Variations of bulk powder catalyst material including Cu—Mn, Cu—Fe, and Fe—Mn spinel systems for ZPGM TWC applications are disclosed. The disclosed bulk powder catalyst samples include stoichiometric and non-stoichiometric Cu—Mn, Cu—Fe, and Fe—Mn spinels on Pr6O11—ZrO2 support oxide, prepared using incipient wetness method. Activity measurements under isothermal steady state sweep test condition may be performed under rich to lean condition. Catalytic activity of samples may be compared to analyze the influence that different binary spinel system bulk powders may have on TWC performance of ZPGM materials for a plurality of TWC applications. Stoichiometric Cu—Mn, Cu—Fe, and Fe—Mn spinel systems exhibit higher catalytic activity than non-stoichiometric Cu—Mn, Cu—Fe, and Fe—Mn spinel systems. The influence of prepared Cu—Mn, Cu—Fe, and Fe—Mn spinel systems may lead into cost effective manufacturing solutions for ZPGM TWC systems.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Applicant: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9259716
    Abstract: Compositions and methods for the preparation of ZPGM oxidation catalyst systems are disclosed. ZPGM catalyst systems may be employed within catalytic converters under lean hydrocarbon, air to fuel ratio condition to oxidize toxic gases, such as carbon monoxide and other hydrocarbons that may be included in exhaust gas. ZPGM oxidation catalyst systems are completely free of PGM catalyst and may include: a substrate, a washcoat, and an overcoat. Washcoat may include silver as ZPGM catalyst, and carrier material oxides. Similarly, overcoat may include at least one ZPGM catalyst, carrier material oxides and OSMs. Overcoat of the disclosed ZPGM catalyst system may include copper and cerium as ZPGM catalysts. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM catalyst systems.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: February 16, 2016
    Assignee: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventor: Zahra Nazarpoor
  • Publication number: 20160023188
    Abstract: YMn2O5 pseudo-brookite compositions with improved thermal stability and catalytic activity as Zero-PGM (ZPGM) catalyst systems for DOC application are disclosed. Testing of YMn2O5 pseudo-brookite catalysts and YMnO3 perovskite catalysts, including variations of calcination temperatures, are performed under DOC light-off (LO) tests at wide range of space velocity to evaluate catalytic performance, especially level of NO oxidation. The presence of YMn2O5 pseudo-brookite oxides in disclosed ZPGM catalyst compositions is analyzed by x-ray diffraction (XRD) analysis. XRD analyses and LO tests confirm that YMn2O5 pseudo-brookite catalysts exhibit higher catalytic activity and significant improved thermal stability when compared to conventional YMnO3 perovskite catalysts.
    Type: Application
    Filed: October 1, 2015
    Publication date: January 28, 2016
    Applicant: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9227177
    Abstract: Variations of coating processes of ZPGM catalyst materials for TWC applications are disclosed. The disclosed coating processes for ZPGM materials are enabled in the preparation of ZPGM catalyst samples according to a plurality of catalyst configurations, which may include washcoat and an overcoat layer with or without an impregnation layer, including Cu—Mn spinel and doped Zirconia support oxide, prepared according to variations of disclosed coating processes. Activity measurements under isothermal steady state sweep test condition are considered under lean condition and rich condition close to stoichiometric condition to analyze the influence of disclosed coating processes on TWC performance of ZPGM catalysts. Different coating processes may substantially increase TWC activity, providing improved levels of NO, CO, and HC conversions and cost effective manufacturing solutions.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: January 5, 2016
    Assignee: Clean Diesel Technologies, Inc.
    Inventor: Zahra Nazarpoor
  • Patent number: 9216410
    Abstract: Stabilized palladium (+1) compounds to mimic rhodium's electronic configuration and catalytic properties are disclosed. Palladium (+1) compounds may be stabilized in perovskite or delafossite structures and may be employed in Three-Way Catalysts (TWC) for at least the conversion of HC, CO and NOx, in exhaust gases. The TWC may include a substrate, a wash-coat and, a first impregnation layer, a second impregnation layer and an over-coat. The second impregnation layer and the over-coat may include palladium (+1) based compounds as catalyst.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: December 22, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventor: Randal L. Hatfield
  • Patent number: 9216382
    Abstract: Disclosed here are methods of preparing zero platinum group metal catalysts systems with different support oxide material. A ZPGM catalyst system may include a substrate and a washcoat and an impregnation layer, wherein said impregnation layer may include the ZPGM pervoskite catalyst and the washcoat layer may include the support oxides material. Suitable support oxides material may include ZrO2, ZrO2 doped with lanthanide group metals, Nb2O5, Nb2O5—ZrO2, Al2O3 and Al2O3 doped with lanthanide group metals, TiO2 and doped TiO2 or mixtures thereof.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: December 22, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventor: Zahra Nazarpoor
  • Patent number: 9216409
    Abstract: Variations of bulk powder catalyst material including Cu—Mn, Cu—Fe, and Fe—Mn spinel systems for ZPGM TWC applications are disclosed. The disclosed bulk powder catalyst samples include stoichiometric and non-stoichiometric Cu—Mn, Cu—Fe, and Fe—Mn spinels on Pr6O11—ZrO2 support oxide, prepared using incipient wetness method. Activity measurements under isothermal steady state sweep test condition may be performed under rich to lean condition. Catalytic activity of samples may be compared to analyze the influence that different binary spinel system bulk powders may have on TWC performance of ZPGM materials for a plurality of TWC applications. Stoichiometric Cu—Mn, Cu—Fe, and Fe—Mn spinel systems exhibit higher catalytic activity than non-stoichiometric Cu—Mn, Cu—Fe, and Fe—Mn spinel systems. The influence of prepared Cu—Mn, Cu—Fe, and Fe—Mn spinel systems may lead into cost effective manufacturing solutions for ZPGM TWC systems.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: December 22, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9216384
    Abstract: Synergized Platinum Group Metals (SPGM) catalyst system for TWC application is disclosed. Disclosed SPGM catalyst system may include a washcoat with a Cu—Mn spinel structure and an overcoat that includes PGM supported on carrier material oxides, such as alumina. SPGM catalyst system shows significant improvement in nitrogen oxide reduction performance under stoichiometric operating conditions and especially under lean operating conditions, which allows a reduced consumption of fuel. Additionally, disclosed SPGM catalyst system also enhances the reduction of carbon monoxide and hydrocarbon within catalytic converters. Furthermore, disclosed SPGM catalyst systems are found to have enhanced catalyst activity compared to commercial PGM catalyst system, showing that there is a synergistic effect among PGM catalyst and Cu—Mn spinel within the disclosed SPGM catalyst system.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: December 22, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9216408
    Abstract: Disclosed here are material formulations of use in the conversion of exhaust gases, where the formulations may include Iron (Fe), Cobalt (Co), Manganese (Mn), Cerium (Ce), Lanthanum and combinations thereof.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: December 22, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventor: Zahra Nazarpoor
  • Patent number: 9216383
    Abstract: Disclosed here are material formulations of use in the conversion of exhaust gases, where the formulations may include Copper (Cu), Cerium (Ce), Tin (Sn), Niobium (Nb), Zirconium (Zr), Calcium (Ca) and combinations thereof.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: December 22, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventor: Zahra Nazarpoor
  • Publication number: 20150290630
    Abstract: Synergized platinum group metals (SPGM) oxidation catalyst systems are disclosed. Disclosed SPGM oxidation catalyst systems may include a washcoat with a Cu—Mn spinel structure and an overcoat including PGM, such as palladium (Pd), platinum (Pt), rhodium (Rh), or combinations thereof, supported on carrier material oxides. SPGM systems show significant improvement in abatement of unburned hydrocarbons (HC) and carbon monoxide (CO), and the oxidation of NO to NO2, which allows reduction of fuel consumption. Disclosed SPGM oxidation catalyst systems exhibit enhanced catalytic activity compared to PGM oxidation systems, showing that there is a synergistic effect between PGM and Cu—Mn spinel composition within the disclosed SPGM oxidation catalyst systems. Disclosed SPGM oxidation catalyst systems may be available for a plurality of DOC applications.
    Type: Application
    Filed: April 11, 2014
    Publication date: October 15, 2015
    Applicant: Clean Diesel Technologies Inc. (CDTi)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20150290627
    Abstract: A diesel oxidation catalyst (DOC) system for the treatment of exhaust gas emissions, including oxidation of nitrogen oxides (NO), unburned hydrocarbons (HC), and carbon monoxide (CO) is disclosed. Fresh and hydrothermally aged Zero-PGM (ZPGM) DOC samples are prepared and configured with an alumina-based washcoat on ceramic substrate, overcoat including doped Zirconia support oxide, and impregnation layer of Cu—Mn spinel of selected base metal loadings. Testing of fresh and hydrothermally aged ZPGM DOC system samples including Cu—Mn spinel is developed to evaluate the performance of Cu—Mn spinel active phase in oxidation CO, HC, and NO, as well as production of NO2. Key to improvement in light-off performance and NO oxidation is to have a diesel oxidation catalyst that is substantially PGM-free and available for a plurality of applications in lean burn engine operations.
    Type: Application
    Filed: April 11, 2014
    Publication date: October 15, 2015
    Applicant: Clean Diesel Technologies Inc. (CDTi)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20150238940
    Abstract: Synergized Platinum Group Metals (SPGM) catalyst system for TWC application is disclosed. Disclosed SPGM catalyst system may include a washcoat with a Cu—Mn stoichiometric spinel structure and an overcoat that includes PGM, such as palladium (Pd) supported on carrier material oxides, such as alumina. SPGM catalyst system shows significant improvement in nitrogen oxide reduction performance under lean operating conditions, which allows a reduced consumption of fuel. Additionally, disclosed SPGM catalyst system also exhibits enhanced catalytic activity for carbon monoxide conversion. Furthermore, disclosed SPGM catalyst systems are found to have enhanced catalytic activity for fresh and aged conditions compared to PGM catalyst system, showing that there is a synergistic effect between PGM catalyst and Cu—Mn spinel within the disclosed SPGM catalyst system which help in thermal stability of disclosed SPGM catalyst.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 27, 2015
    Applicant: CLEAN DIESEL TECHNOLOGIES INC. (CDTI)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20150238941
    Abstract: Synergized Platinum Group Metals (SPGM) catalyst system for TWC application is disclosed. Disclosed SPGM catalyst system may include a washcoat that includes stoichiometric Cu—Mn spinel structure, supported on doped ZrO2, and an overcoat that includes PGM, such as platinum (Pt) supported on carrier material oxides, such as alumina. SPGM catalyst system shows significant improvement in nitrogen oxide reduction performance under lean and also rich operating conditions. Additionally, disclosed SPGM catalyst system exhibits enhanced catalytic activity for carbon monoxide conversion. Furthermore, disclosed SPGM catalyst systems are found to have enhanced catalytic activity compared to PGM catalyst system, showing that there is a synergistic effect between PGM catalyst, such as Pt, and Cu—Mn spinel within disclosed SPGM catalyst system, which help in activity and thermal stability of disclosed SPGM catalyst.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 27, 2015
    Applicant: CLEAN DIESEL TECHNOLOGIES INC. (CDTI)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20150196902
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Application
    Filed: March 26, 2015
    Publication date: July 16, 2015
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Publication number: 20150182951
    Abstract: The present disclosure describes ZPGM material compositions including a CuMn2O4 spinel structure mixed with a plurality of support oxide powders to develop suitable ZPGM catalyst materials. Bulk powder ZPGM catalyst compositions are produced by physically mixing bulk powder CuMn2O4 spinel with different support oxide powders calcined at about 1000° C. XRD analyses are performed for bulk powder ZPGM catalyst compositions to determine Cu—Mn spinel phase formation and phase stability for a plurality of temperatures to about 1000° C. ZPGM catalyst material compositions including CuMn2O4 spinel mixed with La2O3, cordierite, and ceria-zirconia support oxides exhibit phase stability, which can be employed in ZPGM catalysts for a plurality of TWC applications, thereby leading to a more effective utilization of ZPGM catalyst materials with high thermal and chemical stability in TWC products.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20150182954
    Abstract: The present disclosure describes ZPGM material compositions including LaMnO3 perovskite structure mixed with a plurality of support oxide powders to develop suitable ZPGM catalyst materials. Bulk powder ZPGM catalyst compositions are produced by physically mixing bulk powder LaMnO3 perovskite with different support oxide powders calcined at about 1000° C. XRD analyses are performed for bulk powder ZPGM catalyst compositions to determine La—Mn perovskite phase formation and phase stability for a plurality of temperatures to about 1000° C. ZPGM catalyst material compositions including La—Mn perovskite structure mixed with doped zirconia, La2O3, cordierite, and ceria-zirconia support oxides present phase stability, which can be employed in ZPGM catalysts for a plurality of DOC applications, thereby leading to a more effective utilization of ZPGM catalyst materials with high thermal and chemical stability in DOC products.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Applicant: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20150148222
    Abstract: The present disclosure relates to selecting support oxide for ZPGM catalyst for optimal performance under TWC condition, for achieving enhanced catalyst activity, and improved thermal stability during aging. The selected active phase material may include a chemical composition that is substantially free from PGM, including a formulation of stoichiometric Cu—Mn spinel structure active phase with Niobium-Zirconium support oxide, which may include a washcoat of pure alumina coated on a suitable ceramic substrate. The disclosed Cu—Mn spinel structure active phase with Niobium-Zirconium support oxide may be applied in overcoat to maximize efficiency of ZPGM catalyst systems, which may exhibit enhanced catalytic activity properties that may increase with temperature, showing optimized performance purifying gases in TWC condition, and enhanced stability during aging.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Applicant: Clean Diesel Technologies Inc. (CDTi)
    Inventor: Zahra Nazarpoor
  • Publication number: 20150148225
    Abstract: Synergized Platinum Group Metals (SPGM) catalyst systems for TWC application are disclosed. Disclosed SPGM catalyst systems may include a washcoat with a Cu—Mn spinel structure, Cu1.0Mn2.0O4, supported on Nb2O5—ZrO2 and an overcoat that includes PGM supported on carrier material oxides, such as alumina. SPGM catalyst system that includes the spinel structure of Cu1.0Mn2.0O4 show significant improvement in nitrogen oxide reduction performance under stoichiometric operating conditions and especially under lean operating conditions, which allows a reduced consumption of fuel. Additionally, disclosed SPGM catalyst system with spinel structure of Cu1.0Mn2.0O4 also enhances the reduction of carbon monoxide and hydrocarbon within catalytic converters.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Applicant: CLEAN DIESEL TECHNOLOGIES INC. (CDTI)
    Inventors: Zahra Nazarpoor, Stephen J. Golden