Patents Assigned to Clean Technology International Corporation
  • Patent number: 8563501
    Abstract: A method includes positioning an effective amount of a thermal target material at a treatment site of a patient. The treatment site, that is, the location of the thermal target material, comprises a location adjacent to biological tissue to be treated. The thermal target material includes carbon molecules preferably in a carrier fluid. Regardless of the particular structure of the carbon, the carbon molecules in the material heat very rapidly in response to incident microwave radiation and radiate heat energy. The heat energy radiated from an effective amount of the thermal target material when subjected to an effective quantity of microwave energy causes localized heating around the thermal target material. This localized heating may be applied for therapeutic purposes. However, the microwave radiation necessary to produce therapeutically effective heating is insufficient to cause cellular damage in the biological tissue by direct absorption in the tissue.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: October 22, 2013
    Assignee: Clean Technology International Corporation
    Inventors: Anthony S. Wagner, Mark DeSantis
  • Publication number: 20130053932
    Abstract: A method includes positioning an effective amount of a thermal target material at a treatment site of a patient. The treatment site, that is, the location of the thermal target material, comprises a location adjacent to biological tissue to be treated. The thermal target material includes carbon molecules preferably in a carrier fluid. Regardless of the particular structure of the carbon, the carbon molecules in the material heat very rapidly in response to incident microwave radiation and radiate heat energy. The heat energy radiated from an effective amount of the thermal target material when subjected to an effective quantity of microwave energy causes localized heating around the thermal target material. This localized heating may be applied for therapeutic purposes. However, the microwave radiation necessary to produce therapeutically effective heating is insufficient to cause cellular damage in the biological tissue by direct absorption in the tissue.
    Type: Application
    Filed: October 29, 2012
    Publication date: February 28, 2013
    Applicant: CLEAN TECHNOLOGY INTERNATIONAL CORPORATION
    Inventor: Clean Technology International Corporation
  • Patent number: 8299014
    Abstract: A method includes positioning an effective amount of a thermal target material at a treatment site of a patient. The treatment site, that is, the location of the thermal target material, comprises a location adjacent to biological tissue to be treated. The thermal target material includes carbon molecules preferably in a carrier fluid. Regardless of the particular structure of the carbon, the carbon molecules in the material heat very rapidly in response to incident microwave radiation and radiate heat energy. The heat energy radiated from an effective amount of the thermal target material when subjected to an effective quantity of microwave energy causes localized heating around the thermal target material. This localized heating may be applied for therapeutic purposes. However, the microwave radiation necessary to produce therapeutically effective heating is insufficient to cause cellular damage in the biological tissue by direct absorption in the tissue.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: October 30, 2012
    Assignee: Clean Technology International Corporation
    Inventors: Anthony S. Wagner, Mark DeSantis
  • Patent number: 8263037
    Abstract: A method for producing carbon nanostructures according to the invention includes injecting acetylene gas into a reactant liquid. The injected acetylene molecules are then maintained in contact with the reactant liquid for a period of time sufficient to break the carbon-hydrogen bonds in at least some of the acetylene molecules, and place the liberated carbon ions in an excited state. The liberated carbon ions in the excited state then traverse a surface of the reactant liquid and enter a collection area where carbon ions combine to produce carbon nanostructures.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: September 11, 2012
    Assignee: Clean Technology International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 8197787
    Abstract: A method includes producing an isolation atmosphere in a phase changing area above a reactant liquid and then injecting a feed material into the reactant liquid. The feed material includes a carbon-bearing material. The method further includes maintaining the molecules of the injected carbon-bearing material and any reaction products in contact with the reactant liquid for a period of time sufficient to liberate carbon atoms from the carbon-bearing material or reaction products from that material, and place the liberated carbon atoms in an excited state. Liberated carbon atoms in the excited state are then allowed to traverse a surface of the reactant liquid and flow along a particle formation path through the phase changing area so that the liberated carbon atoms may phase change to the ground state while suspended in the phase changing area.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: June 12, 2012
    Assignee: Clean Technology International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 8071534
    Abstract: A method includes positioning an effective amount of a thermal target material at a treatment site of a patient. The treatment site, that is, the location of the thermal target material, comprises a location adjacent to biological tissue to be treated. The thermal target material includes carbon molecules preferably in a carrier fluid. Regardless of the particular structure of the carbon, the carbon molecules in the material heat very rapidly in response to incident microwave radiation and radiate heat energy. The heat energy radiated from an effective amount of the thermal target material when subjected to an effective quantity of microwave energy causes localized heating around the thermal target material. This localized heating may be applied for therapeutic purposes. However, the microwave radiation necessary to produce therapeutically effective heating is insufficient to cause cellular damage in the biological tissue by direct absorption in the tissue.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: December 6, 2011
    Assignee: Clean Technology International Corporation
    Inventors: Anthony S. Wagner, Mark DeSantis
  • Patent number: 7922993
    Abstract: A method for producing carbon nanostructures according to the invention includes injecting acetylene gas into a reactant liquid. The injected acetylene molecules are then maintained in contact with the reactant liquid for a period of time sufficient to break the carbon-hydrogen bonds in at least some of the acetylene molecules, and place the liberated carbon ions in an excited state. This preferred method further includes enabling the liberated carbon ions in the excited state to traverse a surface of the reactant liquid and enter a collection area. Collection surfaces are provided in the collection area to collect carbon nanostructures.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: April 12, 2011
    Assignee: Clean Technology International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 7901653
    Abstract: A method for producing carbon nanostructures according to the invention includes injecting acetylene gas into a reactant liquid. The injected acetylene molecules are then maintained in contact with the reactant liquid for a period of time sufficient to break the carbon-hydrogen bonds in at least some of the acetylene molecules, and place the liberated carbon ions in an excited state. This preferred method further includes enabling the liberated carbon ions in the excited state to traverse a surface of the reactant liquid and enter a collection area. Collection surfaces are provided in the collection area to collect carbon nanostructures.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 8, 2011
    Assignee: Clean Technology International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 7814846
    Abstract: A method includes producing deposition conditions in a collection area above a reactant liquid containing one or more catalyst metals. The reactant liquid is maintained under conditions in which atoms of the catalyst metal may escape from the reactant liquid into the collection area. A suitable carrier gas is directed to traverse a surface of the reactant liquid and flow along a collection path that passes over a collection surface in the collection area. This flow of carrier gas is maintained so that escaped atoms of catalyst metal are entrained in the gas traversing the surface of the reactant liquid and are deposited on the collection surface prior to or concurrently with nanocarbon structure formation at the collection surface.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 19, 2010
    Assignee: Clean Technology International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 7815886
    Abstract: A method includes isolating carbon atoms as conditioned carbide anions below a surface of a reactant liquid. The conditioned carbide anions are then enabled to escape from the reactant liquid to a collection area where carbon nanostructures may form. A carbon structure produced in this fashion includes at least one layer made up of hexagonally arranged carbon atoms. Each carbon atom has three covalent bonds to adjoining carbon atoms and one unbound pi electron.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 19, 2010
    Assignee: Clean Technology International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 7815885
    Abstract: A method includes liberating carbon atoms from hydrocarbon molecules by reaction with or in a reactant liquid and maintaining the liberated carbon atoms in an excited state. The chemically excited liberated carbon atoms are then enabled to traverse a surface of the reactant liquid and are directed across a collection surface. The collection surface and the conditions at and around the collection surface are maintained so that the liberated carbon atoms in the excited state phase change to a ground state by carbon nanostructure self-assembly.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 19, 2010
    Assignee: Clean Technology International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 7587985
    Abstract: A method includes producing an isolation atmosphere in a phase changing area above a reactant liquid and then injecting a feed material into the reactant liquid. The feed material preferably comprises a quantity of a hydrocarbon compound. The method further includes maintaining the molecules of the injected hydrocarbon compound and any reaction products in contact with the reactant liquid for a period of time sufficient to liberate carbon atoms from the hydrocarbon compound or reaction products and place the liberated carbon atoms in an excited state. Liberated carbon atoms in the excited state are then allowed to traverse a surface of the reactant liquid and flow along a particle formation path through the phase changing area so that the liberated carbon atoms may phase change to the ground state while suspended in the phase changing area.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: September 15, 2009
    Assignee: Clean Technology International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 7563426
    Abstract: A method includes producing deposition conditions in a collection area above a reactant liquid containing one or more catalyst metals. The reactant liquid is maintained under conditions in which atoms of the catalyst metal may escape from the reactant liquid into the collection area. A suitable carrier gas is directed to traverse a surface of the reactant liquid and flow along a collection path that passes over a collection surface in the collection area. This flow of carrier gas is maintained so that escaped atoms of catalyst metal are entrained in the gas traversing the surface of the reactant liquid and are deposited on the collection surface prior to or concurrently with nanocarbon structure formation at the collection surface.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: July 21, 2009
    Assignee: Clean Technologies International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 7550128
    Abstract: A method includes liberating carbon atoms from hydrocarbon molecules by reaction with or in a reactant liquid and maintaining the liberated carbon atoms in an excited state. The chemically excited liberated carbon atoms are then enabled to traverse a surface of the reactant liquid and are directed across a collection surface. The collection surface and the conditions at and around the collection surface are maintained so that the liberated carbon atoms in the excited state phase change to a ground state by carbon nanostructure self-assembly.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: June 23, 2009
    Assignee: Clean Technologies International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 7449156
    Abstract: A molten metal reactor (10) quickly entrains a feed material in the molten reactant metal (16) and provides the necessary contact between the molten reactant metal and the feed material to effect the desired chemical reduction of the feed material. The reactor (10) includes a unique feed structure (24) adapted to quickly entrain the feed material into the molten reactant metal (16) and then transfer the molten reactant metal, feed material, and initial reaction products into a treatment chamber (12). A majority of the desired reactions occur in the treatment chamber (12). Reaction products and unspent reactant metal are directed from the treatment chamber (12) to an output chamber (14) where reaction products are removed from the reactor. Unspent reactant metal (16) is then transferred to a heating chamber (15) where it is reheated for recycling through the system.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: November 11, 2008
    Assignee: Clean Technologies International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 7365237
    Abstract: A target material (60) to be treated in a liquid reactant metal is loaded into a containment area defined within a liquid reactant metal treatment vessel (11). The containment area is then placed below the level (L) of the liquid reactant metal in the treatment vessel (11). This places the target material (60) in contact with the liquid reactant metal and allows the desired reactions to occur. Reaction products are then removed from the treatment vessel (11). Placing the containment area below the level (L) of liquid reactant metal in the treatment vessel (11) may be accomplished by pivoting the vessel from a loading position to a treating position to shift the level of liquid reactant metal in the vessel.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: April 29, 2008
    Assignee: Clean Technologies International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 7034197
    Abstract: A liquid reactant metal alloy includes at least one chemically active metal for reacting with non-radioactive material in a mixed waste stream being treated. The reactant alloy also includes at least one radiation absorbing metal. Radioactive isotopes in the waste stream alloy with, or disperse in, the chemically active and radiation absorbing metals such that the radiation absorbing metals are able to absorb a significant portion of the radioactive emissions associated with the isotopes. Non-radioactive constituents in the waste material are broken down into harmless and useful constituents, leaving the alloyed radioactive isotopes in the liquid reactant alloy. The reactant alloy may then be cooled to form one or more ingots in which the radioactive isotopes are effectively isolated and surrounded by the radiation absorbing metals. These ingots comprise the storage products for the radioactive isotopes. The ingots may be encapsulated in one or more layers of radiation absorbing material and then stored.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: April 25, 2006
    Assignee: Clean Technologies International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 6929676
    Abstract: A treatment apparatus (10) includes a liquid reactant metal containment vessel (11) for containing a first liquid reactant metal and isolating the reactant metal from the atmosphere. A release chamber (14) is adapted to receive the first liquid reactant metal from the containment vessel (11) and a submerging arrangement (21) is adapted to dunk or submerge a container (46) of feed material into the liquid reactant metal and move the container to a release location within the release chamber (14). Relatively light materials rising from the submerged container (46), including unreacted feed material, intermediate reaction products, and perhaps final reaction products collect in a collection area (60) having an upper surface defined by an upper surface of the release chamber (14).
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: August 16, 2005
    Assignee: Clean Technologies International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 6717026
    Abstract: A molten metal reactor (10) quickly entrains a feed material in the molten reactant metal (16) and provides the necessary contact between the molten reactant metal and the feed material to effect the desired chemical reduction of the feed material. The reactor (10) includes a unique feed structure (24) adapted to quickly entrain the feed material into the molten reactant metal (16) and then transfer the molten reactant metal, feed material, and initial reaction products into a treatment chamber (12). A majority of the desired reactions occur in the treatment chamber (12). Reaction products and unspent reactant metal are directed from the treatment chamber (12) to an output chamber (14) where reaction products are removed from the reactor. Unspent reactant metal (16) is then transferred to a heating chamber (15) where it is reheated for recycling through the system.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: April 6, 2004
    Assignee: Clean Technologies International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 6669755
    Abstract: A treatment apparatus (10) includes a liquid reactant metal containment vessel (11) for containing a first liquid reactant metal and isolating the reactant metal from the atmosphere. A release chamber (14) is adapted to receive the first liquid reactant metal from the containment vessel (11) and a submerging arrangement (21) is adapted to dunk or submerge a container (46) of feed material into the liquid reactant metal and move the container to a release location within the release chamber (14). Relatively light materials rising from the submerged container (46), including unreacted feed material, intermediate reaction products, and perhaps final reaction products collect in a collection area (60) having an upper surface defined by an upper surface of the release chamber (14).
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: December 30, 2003
    Assignee: Clean Technologies International Corporation
    Inventor: Anthony S. Wagner