Patents Assigned to Cornell University
  • Patent number: 12263223
    Abstract: The present disclosure relates to a systemically administered peptide delivery platform that biodistributes to the kidney or urinary tract. The disclosure further relates to methods of treating a disease of the kidney or urinary tract in a subject in need thereof.
    Type: Grant
    Filed: January 11, 2023
    Date of Patent: April 1, 2025
    Assignees: Cornell University, Tu Therapeutics Inc.
    Inventors: Shek Hang Benedict Law, Vanessa Bellat, Benjamin Byung-min Choi
  • Patent number: 12263211
    Abstract: Provided are compositions and methods that include a K. pneumoniae yidR protein or an antigenic segment of the protein, and homologous of the protein, and antigenic segments of the homologs. The compositions can be provided as vaccine formulations for use with humans and non-human animals, including but not limited to dairy cows. The compositions and methods are useful for prophylaxis and/or therapy of conditions associated with Gram negative bacteria that include K. pneumonia, E. coli, and other pathogenic Gram negative bacteria. The conditions include such bacterial infections generally, and include specifically mastitis and metritis. The compositions and methods can also improve fertility and milk production. Administration of the compositions can improve the likelihood of a first service conception.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: April 1, 2025
    Assignee: Cornell University
    Inventor: Rodrigo Bicalho
  • Patent number: 12258339
    Abstract: The present technology provides compounds as well as compositions including such compounds useful in targeted radiotherapy of cancer and/or mammalian tissue overexpressing prostate specific membrane antigen (“PSMA”) where the compounds are represented by the following: or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable salt thereof, wherein M1 is independently at each occurrence an alpha-emitting radionuclide. Equivalents of such compounds are also disclosed.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: March 25, 2025
    Assignee: Cornell University
    Inventors: John W. Babich, Justin Wilson, Nikki Thiele, James Kelly, Shashikanth Ponnala
  • Patent number: 12259389
    Abstract: The present invention is directed to methods of diagnosing, prognosing, and managing treatment of cancer in a subject. These methods involve selecting a subject having cancer and obtaining, from the selected subject, a population of either exomeres having a diameter less than 50 nm, small exosomes having a diameter of 60-80 nm, or large exosomes having a diameter of 90-120 nm.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: March 25, 2025
    Assignee: CORNELL UNIVERSITY
    Inventors: David C. Lyden, Haiying Zhang
  • Patent number: 12257579
    Abstract: A device is disclosed that comprises a base having first and second reservoirs, each having an inlet and an outlet, and a channel layer comprising an inlet channel in fluid communication with the inlets of the reservoirs, one or more outlet channels in fluid communication with the outlets of the reservoirs, and a channel network comprising at least one channel extending therebetween. In a forward tilted position, a first fluid circuit is formed from the outlet of the first reservoir, through the one or more outlet channels, through the channel network, through the inlet channel, to the both the inlet and outlet of the second reservoir. In a reverse tilted position a second fluid circuit is formed from the outlet of the second reservoir, through the one or more outlet channels, through the channel network, through the inlet channel, to both the inlet and outlet of the first reservoir. Methods of using the device are also disclosed.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: March 25, 2025
    Assignee: CORNELL UNIVERSITY
    Inventors: Michael L. Shuler, Ying Wang
  • Patent number: 12255333
    Abstract: Provided herein are high performance electrodes, electrode materials comprising a plurality of active electrode material-containing particles secured within one or more graphenic web, and precursors thereof. Also provided herein are processes of generating the same by an electrospray process.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: March 18, 2025
    Assignee: Cornell University
    Inventors: Yong Lak Joo, Ling Fei
  • Publication number: 20250073169
    Abstract: Provided is a method of synthesizing polymer particles, including: introducing vapor-phase reagents into a reactor having a substrate; forming condensed droplets of the reagents on the substrate; initiating polymerization; and polymerizing the condensed droplets of the reagents, thereby forming polymer particles. Polymer particles are also provided, including those incorporating therapeutic agents.
    Type: Application
    Filed: August 2, 2022
    Publication date: March 6, 2025
    Applicant: CORNELL UNIVERSITY
    Inventors: Rong YANG, Trevor FRANKLIN, Danielle STREEVER
  • Patent number: 12243921
    Abstract: A vertical gallium oxide (Ga2O3) device having a substrate, an n-type Ga2O3 drift layer on the substrate, an, n-type semiconducting channel extending from the n-type Ga2O3 drift layer, the channel being one of fin-shaped or nanowire shaped, an n-type source layer disposed on the channel; the source layer has a higher doping concentration than the channel, a first dielectric layer on the n-type Ga2O3 drift layer and on sidewalls of the n-type semiconducting channel, a conductive gate layer deposited on the first dielectric layer and insulated from the n-type source layer, n-type semiconducting channel as well as n-type Ga2O3 drift layer, a second dielectric layer deposited over the conductive gate layer, covering completely the conductive gate layer on channel sidewalls and an ohmic source contact deposited over the n-type source layer and over at least a part of the second dielectric layer; the source contact being configured not to be in electrical contact with the conductive gate layer.
    Type: Grant
    Filed: June 13, 2023
    Date of Patent: March 4, 2025
    Assignee: Cornell University
    Inventors: Zongyang Hu, Kazuki Nomoto, Grace Huili Xing, Debdeep Jena, Wenshen Li
  • Patent number: 12244711
    Abstract: Systems, methods, network devices, and machine-readable media disclosed herein include executing a secure algorithm for computing on a plurality of machines in a cluster by receiving a large input message and dividing the large input message into a plurality of initial input messages, computing an encryption of initial input messages, and evaluating a cluster computing circuit using a homomorphic encryption scheme.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: March 4, 2025
    Assignees: NTT Research, Inc., Cornell University
    Inventors: Rex Fernando, Ilan Komargodski, Runting Shi
  • Publication number: 20250064741
    Abstract: A method for delivery of a nucleic acid. comprising administering a lipid nanoparticle composition loaded with the nucleic acid to a subject in which monocytes and/or macrophages have been depleted. thereby delivering the nucleic acid into the subject, the method may more particularly be practiced according to the following steps: a) depleting monocytes and/or macrophages in a subject: and b) administering a lipid nanoparticle composition loaded with the nucleic acid to the subject, thereby delivering the nucleic acid into the subject.
    Type: Application
    Filed: December 20, 2022
    Publication date: February 27, 2025
    Applicant: CORNELL UNIVERSITY
    Inventors: Zhefan YUAN, Sijin LUOZHONG, Shaoyi JIANG
  • Patent number: 12228553
    Abstract: The present disclosure provides methods of analyzing and/or purifying inorganic nanoparticles that may be functionalized with one or more dye group. Analyzing and/or purifying the inorganic nanoparticles includes utilizing liquid chromatography, such as, for example, high performance liquid chromatography (HPLC). Methods of the present disclosure may be used to determine the location of one or more dye groups on and/or in the inorganic nanoparticles. The present disclosure also provides methods of making inorganic nanoparticles and compositions of inorganic nanoparticles.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: February 18, 2025
    Assignee: Cornell University
    Inventors: Thomas C. Gardinier, Ferdinand F. E. Kohle, Joshua A. Hinckley, Ulrich B. Wiesner
  • Patent number: 12226492
    Abstract: Compositions and methods for eosinophilia in a mammal are provided. In one embodiment, the composition is a viral gene therapy vector, and a single dose of the vector reduces increased numbers of eosinophils in a mammal.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: February 18, 2025
    Assignee: Cornell University
    Inventors: Ronald G. Crystal, Odelya E. Pagovich, Katie Stiles
  • Publication number: 20250046038
    Abstract: Methods, device, system and one or more computer readable media having one or more computer programs with instructions to generate custom-fit garment patterns from a 3D body scan are disclosed. The patterns may be obtained by unwrapping the 3D body scan (3D image) into 2D using defined datapoints associated with the surface of a body in a target region. Patterns may be generated for different types of garments. The custom-fit garment patterns generated from the 3D body scan may be basic patterns, which may be further customized or modified as desired.
    Type: Application
    Filed: June 3, 2022
    Publication date: February 6, 2025
    Applicant: CORNELL UNIVERSITY
    Inventors: Jie PEI, Susan P. ASHDOWN
  • Publication number: 20250041463
    Abstract: A method for internal imaging of biological tissue in a subject by positron emission tomography (PET) or single photon emission computer tomography (SPECT), the method comprising: (i) administering to a subject an imaging agent that includes, at minimum, at least one fluorine-18 radionuclide bound directly or indirectly to a fluorophore, and (ii) imaging internal biological tissue of the subject by PET or SPECT. In further embodiments, the method includes (i) administering to a subject an imaging agent that includes at least one fluorine-18 radionuclide bound directly or indirectly to a fluorophore, and at least one biological entity (e.g., blood cell, peptide, nucleotide, aptamer, targeting agent, antibody, or antibody fragment) bound directly or indirectly to the fluorophore; and (ii) imaging internal biological tissue of the subject by PET or SPECT. In some embodiments, the method further includes simultaneously imaging the internal biological tissue by fluorescence imaging.
    Type: Application
    Filed: February 5, 2024
    Publication date: February 6, 2025
    Applicant: CORNELL UNIVERSITY
    Inventors: Richard Ting, Omer Aras, Ye Wang
  • Patent number: 12214340
    Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The catalyst includes metal nanoparticles in an order array on a substrate.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: February 4, 2025
    Assignees: UCHICAGO ARGONNE, LLC, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, A CALIFORNIA CORPORATION, CORNELL UNIVERSITY, NORTHWESTERN UNIVERSITY, AN ILLINOIS NOT-FOR-PROFIT CORPORATION, IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Massimiliano Delferro, Magali S. Ferrandon, Kenneth R. Poeppelmeier, Aaron D. Sadow, Susannah Scott, Anne M. LaPointe, Geoffrey Coates
  • Patent number: 12216116
    Abstract: The present disclosure relates to, inter alia, devices, systems, and methods for use in the magnetic separation of biological entities from fluid samples. This device includes a magnetic separation chamber configured to receive a fluid sample for magnetic separation, where the magnetic separation chamber includes at least two magnets mounted on the surface or in the wall of the magnetic separation chamber. The device also includes a force provider configured to move the magnetic separation chamber in a side-to-side motion to mix and/or magnetize the fluid sample. In one embodiment, the magnetic separation chamber is in a form of a sleeve and comprises a substantially central channel for loading a vessel containing the fluid sample therein. The systems and methods of the present disclosure involve the use of this device to separate biological entities from fluid samples.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: February 4, 2025
    Assignee: CORNELL UNIVERSITY
    Inventors: Sasank Vemulapati, David Erickson
  • Patent number: 12215127
    Abstract: A composition having the following structure: wherein: R1 is OH, ester group, ether group, amine, thiol, thioether, halide, or a group containing an alkynyl or azido functionality; R2 is H, OH, ester group, ether group, amine, thiol, thioether, halide, or a group containing an alkynyl or azido functionality; R3 is a group containing a reactive functionality capable of covalent binding to a thiol or amine; and R4 is H, OH, ester group, ether group, amine, thiol, thioether, halide, or a group containing an alkynyl or azido functionality; wherein one of R1, R2 and R4 is a group containing an alkynyl or azido functionality. Also disclosed is a method for profiling changes in BSH enzyme activity by attaching active BSH enzymes in a sample to the probe shown above, attaching a tag to the probe, and detecting the active BSH enzymes to obtain an activity profile.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: February 4, 2025
    Assignee: CORNELL UNIVERSITY
    Inventors: Pamela Chang, Bibudha Parasar, Lin Han
  • Patent number: 12215677
    Abstract: An artificial cilium device includes a substrate and a voltage-actuated cilia-shaped structure attached at a proximal end to the substrate. The voltage-actuated cilia-shaped structure has a first layer of a first material and a second layer of a second material. The second layer of the second material includes an exposed surface that causes the cilia-shaped structure to, in a working medium, (a) change shape from a first shape to a second shape responsive to application of a first voltage and (b) change shape from the second shape to the first shape responsive to application of a second voltage different than the first voltage.
    Type: Grant
    Filed: July 24, 2024
    Date of Patent: February 4, 2025
    Assignee: Cornell University
    Inventors: Itai Cohen, Wei Wang, Qingkun Liu
  • Publication number: 20250034291
    Abstract: Provided herein is a solid zwitterionic copolymer comprising repeat units of formulas (I) and (II). Compositions and articles comprising the copolymer are also provided, as are methods of making and using the copolymer. For example, layers of the copolymer find use in protecting a substrate from viral contamination, decreasing, reducing, or inhibiting viral proliferation on a substrate, and deactivating a virus on a substrate.
    Type: Application
    Filed: November 14, 2022
    Publication date: January 30, 2025
    Applicant: CORNELL UNIVERSITY
    Inventors: Rong YANG, Pengyu CHEN
  • Publication number: 20250034579
    Abstract: Dysbiosis has been linked to diseases such as inflammatory bowel disease and obesity. Multi-omics studies have uncovered significant associations between microbiota genes and diseases. Many of these genes are exclusively expressed in non-model microbes such as Firmicutes/Clostridia. A pipeline for building microbial genetic manipulation systems would be a first step to manipulating these genes in vivo and causally connecting them with host diseases. The present technology relates generally to compositions and the methods of preparations thereof for genetically engineering gut-microbiota in vitro. The present technology further relates to uses of compositions in vivo.
    Type: Application
    Filed: December 6, 2022
    Publication date: January 30, 2025
    Applicant: Cornell University
    Inventors: Chun-Jun GUO, Wenbing JIN, Tingting LI