Patents Assigned to Cornell University
  • Publication number: 20250144608
    Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The catalyst includes metal nanoparticles in an order array on a substrate.
    Type: Application
    Filed: January 6, 2025
    Publication date: May 8, 2025
    Applicants: UCHICAGO ARGONNE, LLC, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CORNELL UNIVERSITY, NORTHWESTERN UNIVERSITY, IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Massimiliano Delferro, Magali S. Ferrandon, Kenneth R. Poeppelmeier, Aaron D. Sadow, Susannah Scott, Anne M. LaPointe, Geoffrey Coates
  • Patent number: 12294225
    Abstract: A capacitive wireless charging system for use with a vehicle includes a roadway-side capacitive charging pad configured to be embedded in a roadway and to form a capacitive electrical connection with a vehicle-side capacitive charging pad for wirelessly transferring power to charge a vehicle battery when the vehicle is on the roadway, a power conditioning circuit configured to be positioned next to the roadway and to condition power received from a power source, and a plurality of conductors configured to be at least partially embedded in the roadway and to electrically connect the power conditioning circuit and the roadway-side capacitive charging pad, such that the plurality of conductors form a roadway-side matching network for the capacitive electrical connection without discrete inductors and capacitors.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: May 6, 2025
    Assignee: Cornell University
    Inventors: Khurram Afridi, Sounak Maji, Sreyam Sinha, Brandon Regensburger
  • Patent number: 12292380
    Abstract: A detection unit, device, and system for cell capture, spectral analysis, and drug interaction monitoring. The detection unit includes an IR-transparent substrate connected to a plasmonic metasurface with an array of metallic antennas. In a detection device, the detection unit is connected to a microfluidic chamber with a channel such that the channel extends along the metasurface. For the detection system, the detection device is mounted on a microscope. The infrared spectra are collected in reflection, with infrared light impinging on the metasurface from the substrate side and returning back through the substrate in the form of reflected infrared light. The system includes a syringe pump for injecting live cells into the chamber. An AC source is connected to the metasurface for cell capture and its AC voltage creates a dielectrophoretic (DEP) force that causes the live cells to move from the chamber and onto the metasurface for spectral analysis.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: May 6, 2025
    Assignee: Cornell University
    Inventors: Gennady Shvets, Glen Kelp, He Huang
  • Patent number: 12290338
    Abstract: The present disclosure may be embodied as methods and/or systems for non-contact measuring of an on-body and/or inside-body motion of an individual. A sensing signal is provided within a near-field coupling range of a motion to be measured. In this way, a measurement signal may be generated as the sensing signal modulated by the motion. The sensing signal may be an ID-modulated signal. In some embodiments, the sensing signal is a backscattered RFID link provided a wireless tag. A downlink signal may be provided to power the wireless tag. The sensing signal may be a harmonic of the downlink signal. The measurement signal is detected. The motion is measured based on the measurement signal. The measurement signal may be detected as far-field radiation after transmission through a source of the motion. The measurement signal may be detected as reflected from a source of the motion as antenna reflection.
    Type: Grant
    Filed: July 21, 2023
    Date of Patent: May 6, 2025
    Assignee: Cornell University
    Inventors: Xiaonan Hui, Edwin C. Kan
  • Publication number: 20250135073
    Abstract: Systems, methods, and devices having improved conformal properties for biomedical signal measurement are disclosed. A device can have a first polymer substrate coupled to a conductive layer forming a conductive trace electrically coupled to a conductive pad exposed via an opening. The device can have a second polymer substrate forming a first cavity between the first polymer substrate and the second polymer substrate. The device can have a first inlet portion that receives a fluid that expands the first cavity causing the device to conform to an anatomical structure. The structure can be an atrium, such as the left atrium, of the heart of a patient. The device can conform to the walls of the tissue structure, and the conductive pad exposed via the opening can detect a signal from the wall of the tissue structure. The signal can be provided to an external measurement device for processing.
    Type: Application
    Filed: June 5, 2024
    Publication date: May 1, 2025
    Applicant: CORNELL UNIVERSITY
    Inventors: Nazanin Farokhnia, Alexandre Caprio, Varun Umesh Kashyap, Subhi Al' Aref, Bobak Mosadegh, James K. Min, Simon Dunham
  • Patent number: 12285260
    Abstract: Methods for fabricating flexible/stretchable circuits can include identifying one or more regions of a printed circuit board (PCB) for selectively removing insulation material. The PCB can include one or more electrically conductive structures arranged on an insulation layer. The method can include applying, within each region of the one or more regions, thermal energy via a heat source to a surface of the PCB within the region such that insulation material of the insulation layer is removed from the region while a portion of the insulation layer beneath the one or more electrically conductive structures is maintained. The flexible/stretchable circuit can be laminated on a soft actuator to form a soft robotic device.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 29, 2025
    Assignee: Cornell University
    Inventors: Simon Dunham, Bobak Mosadegh, Varun Umesh Kashyap, Tejas Doshi, Alexandre Caprio
  • Patent number: 12288341
    Abstract: A system for processing spatial data may be designed to receive neural network outputs corresponding to a first spatial data set, and translate the neural network outputs corresponding to the first spatial data set based on the motion between a second spatial data set and the first spatial data set. The system may perform zero-gap run length encoding on the neural network outputs to store the neural network outputs in memory. The system may also perform on-the-fly skip zero decoding and bilinear interpolation to translate the neural network outputs.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: April 29, 2025
    Assignee: Cornell University
    Inventors: Mark Buckler, Adrian Sampson
  • Patent number: 12285503
    Abstract: The present invention relates to a method for treating cancer. This method involves providing a first agent comprising a first targeting component coupled to a first cancer therapeutic component and providing a second agent comprising a second targeting component coupled to a second cancer therapeutic component. The first and second targeting components have different biodistributions and/or pharmacokinetics. The first and second agents are administered to a subject having cancer to treat the cancer. Also disclosed is a combination therapeutic comprising the first and second agents.
    Type: Grant
    Filed: August 1, 2023
    Date of Patent: April 29, 2025
    Assignee: CORNELL UNIVERSITY
    Inventor: Neil H. Bander
  • Patent number: 12281015
    Abstract: Provided herein are high throughput continuous or semi-continuous reactors and processes for manufacturing graphenic materials, such as graphene. Such processes are suitable for manufacturing graphenic materials at rates that are up to hundreds of times faster than conventional techniques, and have little batch-to-batch variation. Also provided herein are graphenic compositions of matter, including large, high quality and/or highly uniform graphene.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: April 22, 2025
    Assignee: Cornell University
    Inventors: Yong Lak Joo, Mohammed Alamer, Brian Williams
  • Patent number: 12283455
    Abstract: The present invention relates to a monochromator device. The monochromator device includes a first radiofrequency cavity positioned to receive an output beam from an electron source. A second radiofrequency cavity is positioned to receive the output beam from the first radiofrequency cavity. The first radiofrequency cavity and the second radiofrequency cavity are configured to, in combination, in combination, correct one or more energy deviations in time and space of the output beam.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: April 22, 2025
    Assignee: CORNELL UNIVERSITY
    Inventors: Duncan Cameron, Jared Maxson, David Muller
  • Patent number: 12279450
    Abstract: Patterning electronic devices using reactive-ion etching of tin oxides is provided. Reactive-ion etching facilitates patterning of tin oxides, such as barium stannate (BaSnO3), at a consistent and controllable etch rate. The reactive-ion etching approach described herein facilitates photolithographic patterning of tin oxide-based semiconductors to produce electronic devices, such as thin-film transistors (TFTs). This approach further patterns a tin oxide-based semiconductor without adversely affecting its electrical properties (e.g., resistivity, electron or hole mobility), as well as maintaining surface roughness. This approach can be used to produce optically transparent devices with high drain current (ID, drain-to-source current per channel width) and high on-off ratio.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: April 15, 2025
    Assignee: Cornell University
    Inventor: Jisung Park
  • Patent number: 12275184
    Abstract: Implanted medical devices need a mechanism of immobilization to surrounding tissues, which minimizes tissue damage while providing reliable long-term anchoring. This disclosure relates to techniques for patterning arbitrarily shaped 3D objects and to patterned balloon devices having micro- or nano-patterning on an outer surface of an inflatable balloon. The external pattern can provide enhanced friction and anchoring in an aqueous environment. Examples of these types of patterns are hexagonal arrays inspired by tree frogs, corrugated patterns, and microneedle patterns. The patterned balloon devices can be disposed between an implant and surrounding tissues to facilitate anchoring of the implant.
    Type: Grant
    Filed: April 3, 2023
    Date of Patent: April 15, 2025
    Assignee: Cornell University
    Inventors: Seyedhamidreza Alaie, Simon Dunham, Bobak Mosadegh, James K. Min, Amir Ali Amiri Moghadam
  • Patent number: 12274679
    Abstract: Provided herein are compounds (e.g., compounds of Formula (I) and Formula (II), that modulate HCN channels, intermembrane proteins that serve as nonselective voltage-gated cation channels in the plasma membranes of heart and brain cells. Also provided are pharmaceutical compositions and kits comprising the compounds, and methods of treating HCN-related disorders (e.g., pain) with the compounds in a subject, by administering the compounds and/or compositions described herein.
    Type: Grant
    Filed: April 26, 2023
    Date of Patent: April 15, 2025
    Assignee: Cornell University
    Inventors: Gareth R. Tibbs, Peter A. Goldstein, Anthony A. Sauve, Rajendra Uprety, James David Warren, Jr., Rebecca L. Joyce, Dipti N. Barman
  • Patent number: 12268742
    Abstract: Described herein are systems and methods for particle-based photodynamic therapy (PDT) for the treatment of diseases such as cancer of the oral cavity and/or ovarian cancer metastases along the lining of the pelvis. The technology includes an imaging system (e.g., a multichannel imaging camera) configured to perform diagnostic and/or therapeutic treatment on diseased tissue. In certain embodiments, the imaging system comprises one or more excitation sources (e.g., one or more lasers) to assess and/or treat diseased tissue.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: April 8, 2025
    Assignees: MEMORIAL SLOAN KETTERING CANCER CENTER, CORNELL UNIVERSITY
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Snehal G. Patel, Feng Chen, Brian Madajewski, Daniella Karassawa Zanoni
  • Patent number: 12268759
    Abstract: The present technology provides compounds, as well as compositions including such compounds, useful for imaging and/or treatment of a glioma, a breast cancer, an adrenal cortical cancer, a cervical carcinoma, a vulvar carcinoma, an endometrial carcinoma, a primary ovarian carcinoma, a metastatic ovarian carcinoma, a non-small cell lung cancer, a small cell lung cancer, a bladder cancer, a colon cancer, a primary, gastric adenocarcinoma, a primary colorectal adenocarcinoma, a renal cell carcinoma, and/or a prostate cancer.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: April 8, 2025
    Assignee: Cornell University
    Inventors: John W. Babich, James M. Kelly, Alejandro Amor-Coarasa, Shashikanth Ponnala
  • Patent number: 12271775
    Abstract: The technology disclosed in this patent document can be used to construct devices with opto-electronic circuitry for sensing and identification applications, to provide untethered devices for deployment in living objects and other applications, and to provide fabrication techniques for making such devices for commercial production. As illustrated by specific examples disclosed herein, the disclosed technology can be implemented to provide fabrication methods, substrates, and devices that enable wireless, inorganic cell-scaled sensor and identification systems that are optically-powered and optically-readout.
    Type: Grant
    Filed: July 12, 2024
    Date of Patent: April 8, 2025
    Assignee: Cornell University
    Inventors: Alejandro J. Cortese, Alyosha C. Molnar, Paul L. McEuen, Sunwoo Lee
  • Patent number: 12263223
    Abstract: The present disclosure relates to a systemically administered peptide delivery platform that biodistributes to the kidney or urinary tract. The disclosure further relates to methods of treating a disease of the kidney or urinary tract in a subject in need thereof.
    Type: Grant
    Filed: January 11, 2023
    Date of Patent: April 1, 2025
    Assignees: Cornell University, Tu Therapeutics Inc.
    Inventors: Shek Hang Benedict Law, Vanessa Bellat, Benjamin Byung-min Choi
  • Patent number: 12263211
    Abstract: Provided are compositions and methods that include a K. pneumoniae yidR protein or an antigenic segment of the protein, and homologous of the protein, and antigenic segments of the homologs. The compositions can be provided as vaccine formulations for use with humans and non-human animals, including but not limited to dairy cows. The compositions and methods are useful for prophylaxis and/or therapy of conditions associated with Gram negative bacteria that include K. pneumonia, E. coli, and other pathogenic Gram negative bacteria. The conditions include such bacterial infections generally, and include specifically mastitis and metritis. The compositions and methods can also improve fertility and milk production. Administration of the compositions can improve the likelihood of a first service conception.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: April 1, 2025
    Assignee: Cornell University
    Inventor: Rodrigo Bicalho
  • Patent number: 12257579
    Abstract: A device is disclosed that comprises a base having first and second reservoirs, each having an inlet and an outlet, and a channel layer comprising an inlet channel in fluid communication with the inlets of the reservoirs, one or more outlet channels in fluid communication with the outlets of the reservoirs, and a channel network comprising at least one channel extending therebetween. In a forward tilted position, a first fluid circuit is formed from the outlet of the first reservoir, through the one or more outlet channels, through the channel network, through the inlet channel, to the both the inlet and outlet of the second reservoir. In a reverse tilted position a second fluid circuit is formed from the outlet of the second reservoir, through the one or more outlet channels, through the channel network, through the inlet channel, to both the inlet and outlet of the first reservoir. Methods of using the device are also disclosed.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: March 25, 2025
    Assignee: CORNELL UNIVERSITY
    Inventors: Michael L. Shuler, Ying Wang
  • Patent number: 12259389
    Abstract: The present invention is directed to methods of diagnosing, prognosing, and managing treatment of cancer in a subject. These methods involve selecting a subject having cancer and obtaining, from the selected subject, a population of either exomeres having a diameter less than 50 nm, small exosomes having a diameter of 60-80 nm, or large exosomes having a diameter of 90-120 nm.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: March 25, 2025
    Assignee: CORNELL UNIVERSITY
    Inventors: David C. Lyden, Haiying Zhang