Patents Assigned to Corning Optical Communications Wireless, LTD
  • Patent number: 10247893
    Abstract: Optical connector assemblies and optical cable assemblies incorporating a supplemental input voltage are disclosed. In one embodiment, an optical connector assembly includes housing and an electrical connector at a face of the housing. The electrical connector includes an input voltage contact for receiving an input voltage. The optical connector assembly further includes voltage converter operable to convert the input voltage to an output voltage at a converter output, a voltage clamping device electrically coupled to the converter output, and a supplemental voltage conductor. The output voltage is greater than the input voltage. The supplemental voltage conductor is electrically coupled to an output of the voltage clamping device and provides a supplemental output voltage at an output of the voltage clamping device. The optical connector assembly further includes an active optical circuit that converts electrical data signals into optical signals.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: April 2, 2019
    Assignee: Corning Optical Communications Wireless LTD
    Inventors: Ori Elkayam, Ami Hazani
  • Patent number: 10236924
    Abstract: Embodiments of the disclosure relate to reducing out-of-channel noise in a wireless distribution system (WDS). A digital filter in a remote unit is configured to suppress out-of-channel noise in a downlink digital communications signal based on at least one filter configuration parameter received from a control circuit. The control circuit is configured to determine the filter configuration parameter based on physical characteristics of the downlink digital communications signal. By suppressing the out-of-channel noise of the downlink digital communications signal, it is possible to provide a downlink RF communications signal communicated from the remote unit that complies with a spectrum emission mask (SEM).
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: March 19, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Liav Moshe Daniel, Roi Yosy Ziv
  • Patent number: 10237873
    Abstract: Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems, are disclosed. In one embodiment, a controller unit samples a plurality of serial digital data streams simultaneously. To allow the controller unit to sample the multiple serial digital data streams simultaneously from a plurality of ADCs, the controller unit is configured to provide a plurality of data input ports. Each of the ADCs is coupled to a common chip select port and clock signal port on the controller unit. The controller unit communicates a chip select signal on the chip select port to activate all of the ADCs simultaneously to cause each of the ADCs to provide its respective digital data stream to the respective data input port of the controller unit simultaneously for sampling. As a result, fewer or lower-cost components may be used to sample multiple ADCs.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: March 19, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Amit Gutman
  • Patent number: 10219220
    Abstract: Embodiments of the disclosure relate to reducing power consumption in a remote unit of a wireless distribution system (WDS) for intermodulation product suppression. Intermodulation products generated by a power amplifier circuit can leak from a downlink signal path into an uplink signal path to degrade sensitivity of the uplink signal path in a remote unit. In this regard, the remote unit is configured to measure a power of the leaked intermodulation products and enables a selected number of power amplifiers in the power amplifier circuit for reducing the measured power of the leaked intermodulation products to a predetermined threshold. By enabling only the selected number of power amplifiers based on the measured power of the leaked intermodulation products, it is possible to avoid enabling an excessive number of power amplifiers in the power amplifier circuit, thus helping to reduce power consumption for intermodulation product suppression.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: February 26, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Motti Yakobi
  • Patent number: 10200960
    Abstract: Embodiments of the disclosure relate to a remote antenna unit (RAU) with multiple antenna assembly in a distributed antenna system (DAS). In this regard, an RAU(s) in a DAS includes a plurality of directional antennas, a power generation circuit, and a controller. The power generation circuit is configured to generate a power output having an aggregated power. The controller is configured to allocate the aggregated power to the directional antennas based on a power allocation scheme. By allocating the aggregated power between the directional antennas based on the power allocation scheme, it is possible to programmably control radiation patterns and transmission powers of the directional antennas in the RAU(s). As a result, it is possible to provide optimized radio frequency (RF) coverage throughout a coverage area(s) of the RAU(s) without preconfiguring the radiation patterns and transmission powers of the directional antennas.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: February 5, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Dror Harel
  • Patent number: 10200124
    Abstract: Unified optical fiber-based distributed antenna systems (DASs) for supporting small cell communications deployment from multiple small cell service providers are disclosed. The unified optical fiber-based DASs disclosed herein are configured to receive multiple small cell communications from different small cell service providers to be deployed over optical fiber to small cells in the DAS. In this manner, the same DAS architecture can be employed to distribute different small cell communications from different small cell service providers to small cells. Use of optical fiber for delivering small cell communications can reduce the risk of having to deploy new cabling if bandwidth needs for future small cell communication services exceeds conductive wiring capabilities. Optical fiber cabling can also allow for higher distance cable runs to the small cells due to the lower loss of optical fiber, which can provide for enhanced centralization services.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: February 5, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, William Patrick Cune
  • Patent number: 10192040
    Abstract: A computer system for providing software over a network includes: a computer system for providing software over a network is provided. The system includes: a control unit configured to reside at a site, the control unit including a control unit identification (ID) that uniquely identifies the control unit to the network; a copy of the software, the software including sets of features; a license generator configured to create a features activation file containing the control unit ID and identifying at least one set of features to be activated by the control unit; a computer configured to download the features activation file to the control unit; and, the control unit configured for activating one of the sets of features according to the features activation file. A method and a computer program product are disclosed.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: January 29, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Eytan Radian, Gila Shmueli
  • Patent number: 10187151
    Abstract: Embodiments of the disclosure relate to digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs). In this regard, in one aspect, a DAIM is a multi-functional device capable of distributing the digital and/or analog communications signals to a local-area DASs in a wide-area DAS. The DAIM comprises an analog radio frequency (RF) communications signal interface for coupling with an analog signal source, a digital communications interface for coupling with a digital signal source, an analog local distribution interface for coupling with a remote antenna unit (RAU), and at least one digital remote distribution interface for coupling with a head-end unit (HEU) of the local-area DAS. By employing the DAIM in the wide-area DAS, it is possible to flexibly reconfigure the wide-area DAS for distributing digital and/or analog communications signals over the digital communications mediums.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: January 22, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Dror Harel, Gavriel Mizrahi
  • Patent number: 10187150
    Abstract: Direct communicative coupling of a base station(s) to a remote unit for exchanging communications services with a distributed communications system (DCS) is disclosed. For example, the remote unit may include a remote antenna unit that is provided in a distributed antenna system (DAS) as one type of DCS. In this manner, the remote unit can facilitate distribution of communications services from a base station into the DCS at locations other than at a centralized location in the DCS, such as at a central unit or head-end equipment. Various DCS configurations are possible that include a remote unit supporting the direct communicatively coupling to a base station(s) for distributing communications services in a DCS.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: January 22, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Gavriel Mizrahi, Parwiz Shekalim
  • Patent number: 10181906
    Abstract: A gain level control circuit in a wireless distribution system (WDS) is provided. The digital level control circuit receives a number of first digital communications signals having a number of first digital amplitudes and generates a number of second digital communications signals having a number of second digital amplitudes. When a selected second digital amplitude approaches a full-scale digital amplitude represented by a predefined number of binary bits, the gain level control circuit determines a selected first digital communications signal having a selected first digital amplitude causing the selected second digital amplitude to exceed the full-scale digital amplitude and adjusts the selected first digital amplitude to reduce the selected second digital amplitude to lower than or equal to the full-scale digital amplitude.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: January 15, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Dror Harel
  • Patent number: 10148466
    Abstract: A distributed antenna system (DAS) and method are disclosed. The system includes at least one RIM associated with a remote unit. The RIMs and the remote units (RU) are configured for transmitting and receiving test signal over at least one narrow band of frequencies. The system includes a plurality of signal generators associated with a signal path, each signal generator configured for generating a test signal over the at least one narrow band of frequencies; a controller configured to generate a test signal for the signal path; and, an equalizer for adjusting gain for the signal path according to at least one of the narrow band of frequencies.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: December 4, 2018
    Assignee: Corning Optical Communications Wireless Ltd.
    Inventor: Yury Abramov
  • Patent number: 10142864
    Abstract: Technologies are described for using optical and electrical transmission of a plurality of communications services from a plurality of outside sources to a network of users via a distributed antenna system. The systems and methods disclosed herein provide for distribution of the communications services and for re-routing the services when a failure occurs. These systems and methods detect when there is a failure of the service to the network or within the network, where the failure has occurred, and how to redistribute the services via a switching network or matrix.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: November 27, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Dror Harel, Boris Radin
  • Patent number: 10141959
    Abstract: Radio-frequency (RF) integrated circuit (RFIC) chip(s) allow for the integration of multiple electronic circuits on a chip to provide distributed antenna system functionalities. RFIC chips are employed in central unit and remote unit components, reducing component cost and size, increasing performance and reliability, while reducing power consumption. The components are also easier to manufacture. The RFIC chip(s) can be employed in distributed antenna systems and components that support RF communications services and/or digital data services.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: November 27, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Ofer Saban, Isaac Shapira
  • Patent number: 10142801
    Abstract: Embodiments of the disclosure relate to a transceiver circuit employing shared digital signal processing circuitry for communicating radio frequency (RF) analog communications signals received by a remote unit in a wireless distribution system (WDS). A transceiver circuit includes downlink digital signal processing circuitry that receives and processes a downlink digital communications signal(s) having a first downlink digital baseband signal and a second downlink digital baseband signal. A first downlink analog signal path and a second downlink analog signal path share the downlink digital signal processing circuitry. The first downlink analog signal path generates a first downlink analog RF communications signal. The second downlink analog signal path generates a second downlink analog RF communications signal.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: November 27, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Maor Saig
  • Patent number: 10142025
    Abstract: Embodiments of the disclosure relate to a high-directivity directional coupler, and related methods and systems. The high-directivity directional coupler includes a first microstrip and a second microstrip disposed parallel to the first microstrip. The high-directivity directional coupler inherently generates an even mode current and an odd mode current in the second microstrip. The second microstrip provides a linear forward path for conveying the even mode current and a non-linear return path for conveying the odd mode current. The non-linear return path is longer than the linear forward path to compensate for phase velocity difference between the even mode current and the odd mode current. As a result, the odd mode current and the even mode current in the second microstrip can destructively cancel out each other, thus rendering high-directivity without compromising other performance aspects of the high-directivity directional coupler.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: November 27, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Roi Yosy Ziv
  • Patent number: 10141985
    Abstract: In a wireless distribution system, a test signal(s) having a first power level is injected from a first contact point. The test signal(s) is configured to propagate from the first contact point to a second contact point over a downlink path and an uplink path, thus creating a signal loop(s). A second power level of the test signal(s) is measured at the second contact point, and an actual loop gain of the wireless distribution system is determined by subtracting the first power level from the second power level. By determining the actual loop gain of the wireless distribution system, it is possible to further determine a gain margin of the wireless distribution system. Based on the gain margin, it is possible to determine optimization possibilities for the wireless distribution system to maximize capacity and performance of the wireless distribution system.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: November 27, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Liav Moshe Daniel
  • Patent number: 10135533
    Abstract: Embodiments disclosed in the detailed description include analog distributed antenna system (DAS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals. Analog RF communications signals received from analog RF signal sources are distributed in the analog DAS without being digitized. The analog DAS is also configured to interface with digital signal sources and compatibly distribute digital communications signals. Hence, a digital signal interface in head-end equipment (HEE) is configured to convert downlink digital communications signals to downlink analog RF communications signals for distribution to a plurality of remote units. The digital signal interface is also configured to convert uplink analog RF communications signals to uplink digital communications signals for distribution to the digital signal source(s).
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: November 20, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Ami Hazani, Eytan Radian
  • Patent number: 10136427
    Abstract: Embodiments of the disclosure relate to partitioning a time-division-based communications link for communicating multiple types of communications signals in a wireless distribution system (WDS). A WDS is configured to communicate multiple types of communications signals over a time-division-based communications link. For example, the WDS may be configured to communicate a digital baseband signal as a first type of communications signal and an Ethernet signal as a second type of communications signal. In this regard, a protocols division routing circuit(s) is provided in the WDS and configured to partition the time-division-based communications link between multiple types of communications signals based on a link configuration ratio.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: November 20, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Dror Harel, Gavriel Mizrahi, Ofer Nisan
  • Patent number: 10135561
    Abstract: An optical communications system includes an optical transmitter and an optical receiver optically coupled to an optical combiner/splitter, the combiner/splitter coupled to optical media; and, another optical transmitter and another optical receiver optically coupled to another optical combiner/splitter, the another combiner/splitter remotely coupled to the optical media; wherein the optical transmitter and the another optical transmitter are configured to transmit optical signals at substantially the same wavelength.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: November 20, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Pinhas Yehuda Rosenfelder, Carmi Shapira
  • Patent number: 10123162
    Abstract: Embodiments of the disclosure relate to determining location of client devices in a distributed antenna system (DAS) based on detecting uplink received power. In this regard, a client device location system is provided in the DAS to configure each remote unit in the DAS to generate a power-regulated UL communications signal based on an assigned power pattern. If a respective power pattern of a reference signal(s) uniquely identifying a client device corresponds to the assigned power pattern of the remote unit that generates the power-regulated UL communications signal, the client device location system reports the location of the remote unit as the location of the client device in the DAS. Hence, it is possible to locate the client device based on the location of the remote unit, thus providing the location of the client device with higher degree of accuracy.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: November 6, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Dror Harel, Parwiz Shekalim