Patents Assigned to Corning Optical Communications Wireless, LTD
  • Patent number: 10116264
    Abstract: Embodiments of the disclosure relate to calibrating a power amplifier. The power amplifier calibration circuit is configured to provide a plurality of bias signal combinations each including a respective first bias signal and a respective second bias signal to the power amplifier. Power amplifier performance parameters for each of the bias signal combinations can be measured and provided to a control circuit in the power amplifier calibration circuit. The control circuit is configured to rank the measured power amplifier performance parameters based on predefined ranking criteria and determines a selected bias signal combination that can optimize the power amplifier performance parameters of the power amplifier. As such, it is possible to calibrate the power amplifier to operate at a balanced performance level, thus helping to improve radio frequency (RF) coverage and performance of the remote unit in a wireless distribution system (WDS).
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: October 30, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Amit Gutman, Shlomi Kaduri, Roi Yosy Ziv
  • Patent number: 10110308
    Abstract: Embodiments of the disclosure relate to digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs). In this regard, in one aspect, a DIM is a multi-functional device capable of distributing the digital and/or analog communications signals to a local-area DASs in the wide-area DAS. The DIM comprises a digital communications interface for coupling with a digital signal source, an analog local distribution interface for coupling with an analog signal source, and at least one digital remote distribution interface for coupling with a head-end unit (HEU) of the local-area DAS. By employing the DIM in the wide-area DAS, it is possible to flexibly reconfigure the wide-area DAS for distributing digital and/or analog communications signals over the digital communications mediums.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: October 23, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Dror Harel, Gavriel Mizrahi
  • Patent number: 10103834
    Abstract: Embodiments of the disclosure relate to wireless distribution systems (WDSs) employing an optical star communications architecture based on quad small form-factor pluggable (QSFP) coarse wavelength division multiplexing (CWDM) transceivers. In one aspect, a selected QSFP CWDM transceiver among one or more QSFP CWDM transceivers wavelength multiplexes a plurality of downlink optical communications signals to generate a WDM downlink communications signal and provides WDM downlink communications signal to a selected remote unit branch among one or more remote unit branches in the WDS. In another aspect, the selected QSFP CWDM transceiver wavelength de-multiplexes a WDM uplink communications signal received from the selected remote unit branch into a plurality of uplink optical communications signals.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: October 16, 2018
    Assignee: Corning Optical Communications Wireless Ltd.
    Inventor: Pinhas Yehuda Rosenfelder
  • Patent number: 10096909
    Abstract: Embodiments disclosed include multi-band monopole planar antennas configured to facilitate radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement. In one aspect, a multi-band monopole planar antenna is provided and configured to generate a slant 45° radiation polarization in the lower frequency band. As a result, sufficient RF isolation may be achieved in the lower frequency band when a plurality of dual-band monopole planar antennas is placed in the MIMO arrangement. In another aspect, the multi-band monopole planar antenna is configured not to support certain unused RF bands, thus facilitating height reduction in the multi-band monopole planar antenna. By configuring the dual-band monopole planar antenna to generate the slant-45 radiation polarization in the lower frequency band, a plurality of the multi-band monopole planar antennas may be placed in close proximity to each other to support MIMO operation without compromising RF performance.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: October 9, 2018
    Assignee: Corning Optical Communications Wireless Ltd.
    Inventors: Ronen Schwartzman, Yuval Tzur
  • Patent number: 10097381
    Abstract: A radio frequency (RF) equalizer includes a coupler including an input port, an output port, a coupling port, and an isolation port; a combination circuit including; a coupling node electrically coupled to the coupling port; a first digitally controlled capacitor (DTC) connected between the coupling node and ground; a resistor connected between the coupling node and ground for controlling a quality factor (Q) of resonance of the equalizer; an isolation node coupled to the isolation port; and a second DTC connected between the isolation node and ground. A system and a method of operation are provided.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: October 9, 2018
    Assignee: Corning Optical Communication Wireless Ltd
    Inventor: Roi Yosy Ziv
  • Patent number: 10091749
    Abstract: Embodiments for providing reference signal generation redundancy in distributed antenna systems (DASs) are disclosed. To avoid a single point of failure in reference signal generation that could cause components relying on the reference signal to not operate properly, the reference signal generation circuits disclosed herein include a plurality of reference signal generation modules. One reference signal generation module is configured as the master reference signal generation module to generate a master reference signal distributed in the DAS. The other reference signal generation modules are configured as slave reference signal generation modules. If a failure is detected in the generation of the master reference signal in the master reference signal generation module, another slave reference signal generation module is reconfigured to be the new master reference signal generation module to generate the master reference signal.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: October 2, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Dror Harel, Boris Radin
  • Patent number: 10080152
    Abstract: Embodiments of the disclosure relate to systems and methods for determining asymmetric downlink and uplink propagation delays in a wireless distribution system (WDS) for more accurately determining propagation delay. In this regard, a WDS is configured to determine both the separate downlink and uplink propagation delays between a central unit and a plurality of remote units. It is not presumed that the downlink propagation delay and the uplink propagation delay in the WDS are symmetric to provide a more accurate determination of propagation delay. Therefore, it is possible to determine the downlink and uplink propagation delays with improved accuracy, thus enabling more precise location identification in the WDS.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: September 18, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Dror Harel
  • Patent number: 10063318
    Abstract: Embodiments of the disclosure relate to combining uplink radio frequency (RF) communications signals in a remote unit in a wireless distribution system (WDS) using a differential mixer. A remote unit in a WDS receives a first uplink RF communications signal(s) and a second uplink RF communications signal(s). A differential mixer, which is typically configured to combine a pair of differential input signals, is controlled to combine the first uplink RF communications signal(s) and second uplink RF communications signal(s) without requiring the first uplink RF communications signal(s) and second uplink RF communications signal(s) to be converted into the pair of differential input signals. As a result, it may be possible to eliminate a signal combiner and a BalUn circuit from the remote unit, thus helping to save component costs and board space, and to reduce insertion loss and ripple to improve uplink signal quality in the remote unit.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: August 28, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Dror Ben-Shlomo
  • Patent number: 10051510
    Abstract: Embodiments of the disclosure relate to a front-haul communications system for enabling communication service continuity in a wireless distribution system (WDS) network. A WDS network includes a front-haul communications system and a plurality of remote WDSs. In this regard, a front-haul link control circuit is provided in the front-haul communications system to detect failed front-haul communication link(s). In response to detecting the failed front-haul communication link(s), the front-haul link control circuit reroutes a disrupted communication service(s) to operational front-haul communication link(s) based on bandwidth capacity requirements of the disrupted communication service(s) and unused bandwidth capacity of the operational front-haul communication link(s).
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: August 14, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Boris Radin
  • Patent number: 10044419
    Abstract: One embodiment of the disclosure relates to supporting distinct single-input single-output (SISO) services in a multiple-input multiple-output (MIMO) baseband circuit, particularly suited for a distributed antenna system (DAS). In this regard, in one aspect, two communication paths in the MIMO baseband circuit are reconfigured to distribute two distinct SISO signals. A quadrature modulator modulates the two distinct SISO signals to two different radio frequency (RF) bands, respectively, based on a modulation frequency. In another aspect, the two or more distinct SISO signals are provided to the quadrature modulator using two intermediate frequencies (IFs) that are determined based on the center frequencies and bandwidths of the two different RF bands. By reconfiguring the MIMO baseband circuit to distribute the two distinct SISO signals, it is possible to retro-support new wireless communication services and/or new RF bands in existing DAS installations without replacing the MIMO baseband circuit.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: August 7, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Liav Moshe Daniel
  • Patent number: 10020885
    Abstract: Direct communicative coupling of a base station(s) to a remote unit for exchanging communications services with a distributed communications system (DCS) is disclosed. For example, the remote unit may include a remote antenna unit that is provided in a distributed antenna system (DAS) as one type of DCS. In this manner, the remote unit can facilitate distribution of communications services from a base station into the DCS at locations other than at a centralized location in the DCS, such as at a central unit or head-end equipment. Various DCS configurations are possible that include a remote unit supporting the direct communicatively coupling to a base station(s) for distributing communications services in a DCS.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: July 10, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Gavriel Mizrahi, Parwiz Shekalim
  • Patent number: 10014945
    Abstract: Embodiments relate to providing simultaneous digital and analog services in optical fiber-based distributed radio frequency (RF) antenna systems (DASs), and related components and methods. A multiplex switch unit associated with a head-end unit of a DAS can be configured to receive a plurality of analog and digital downlink signals from one or more sources, such as a service matrix unit, and to assign each downlink signal to be transmitted to one or more remote units of the DAS. In one example, when two or more downlink signals are assigned to be transmitted to the same remote unit, a wave division multiplexer/demultiplexer associated with the multiplex switch unit can be configured to wave division multiplex the component downlink signals into a combined downlink signal for remote side transmission and to demultiplex received combined uplink signals into their component uplink signals for head-end side transmission.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: July 3, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: William Patrick Cune, Ofer Saban, Isaac Shapira
  • Patent number: 10009094
    Abstract: A method and system for monitoring and optimizing a network may include configuring a remote antenna unit with a first transceiver for uplinking and downlinking a signal of a cellular service and with a second transceiver for uplinking and downlinking of the signal of at least one of a Bluetooth or Wi-Fi or Zigbee service. Performance data is collected from at least one user equipment configured for connecting to the remote antenna unit. The collected performance data is routed to a performance data collector configured to aggregate the performance data. The aggregated performance data is correlated. The network is optimized based on the correlated performance data.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: June 26, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Adi Malach
  • Patent number: 10003404
    Abstract: Components, systems, and methods for determining efficiency of an optical signal source in distributed communication systems are disclosed. Environmentally induced variations in the performance of optical sources used to convert electrical signals to optical signals (such as laser diodes) at the transmitters within the system can be evaluated in real time. Steps can be taken to compensate for these variations. The efficiency of the laser diode can be measured and provided to receivers in the distributed communication system. The receiver may use information related to the slope efficiency measurement to adjust the gain of the receiving amplifiers to provide desired adjustments to the gain. Thus, the receivers in the remote units (RU) receive information about the slope efficiency of the laser diodes at the head end equipment (HEE) and the HEE receives information about the slope efficiency of the laser diodes at the RU.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: June 19, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Ofer Nisan, Rami Reuven, Pinhas Yehuda Rosenfelder, Ofer Shinaar
  • Patent number: 10003977
    Abstract: Implementing a live wireless communication system configuration from a virtual wireless communication system design using an original equipment manufacturer (OEM) specific software system in a real wireless communication system is disclosed herein. In exemplary aspects disclosed herein, the OEM specific software system enables a designer to create, save, import, modify and/or preconfigure a virtual wireless communication system in a virtual wireless communication system configuration file(s) using OEM specific software tools resident in the real wireless communication system. The OEM specific software tools could include functionality such as the ability to incorporate and enforce OEM design constraints of the real wireless communication system. The configuration file(s) can then be subsequently implemented to modify and/or configure live equipment of a real wireless communication system.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: June 19, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Lior Michael Kruh, Bryan Ray Roark
  • Patent number: 9980237
    Abstract: Individualized gain control of uplink paths in remote units in a wireless communication system based on individual remote unit contribution to combined uplink power is disclosed. The gain level is reduced for uplink paths of individual remote units that provide higher power contribution to the combined uplink power of a combined uplink communications signal received in the central unit. This allows the initial uplink gain of all remote units to be set higher to increase sensitivity, because the gain of the remote units that provide higher power contributions to the combined uplink power in the central unit can be reduced if the combined uplink power exceeds the desired threshold power level. The gain of the remote units that provide higher power contributions to the combined uplink power in the central unit can be reduced without reducing the gain in the other remote units that would otherwise reduce their sensitivity.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: May 22, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Dror Harel
  • Patent number: 9979501
    Abstract: Frequency independent isolation of duplexed ports in distributed antenna systems (DASs) is disclosed. Instead of providing a duplexer in a DAS that provides frequency dependent separation between downlink and uplink communications signals, an isolation circuit is provided. The isolation circuit is coupled to a duplexed port that provides downlink communications signals to the DAS and receives uplink communications signals from the DAS. To isolate uplink communications signals from the downlink communications path, the isolation circuit includes a directional coupler. The directional coupler provides frequency independent isolation between uplink communications signals and a downlink communications path in the DAS. Further, to isolate downlink communications signals from the uplink communications path, the isolation circuit includes at least one circulator isolator.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: May 22, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Yury Abramov, Motti Vahedy
  • Patent number: 9974074
    Abstract: Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) is disclosed. In one embodiment, a control circuit is provided and configured to control the TDD transmit mode of a DAS to control the allocation of time slots for uplink and downlink communications signal distribution in respective uplink path(s) and downlink path(s). The control circuit includes separate power detectors configured to detect either a transmit power level in a downlink path or a receive power level in an uplink path. If the transmit power detected in the downlink path is greater than receive power detected in the uplink path, the control circuit switches the TDD transmit mode to the downlink direction. In this manner, the control circuit does not have to control the TDD transmit mode based solely on detected power in the downlink path, where a directional coupler may leak uplink power in the downlink path.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: May 15, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Dror Ben-Shlomo, Isaac Shapira
  • Patent number: 9973968
    Abstract: Distribution of management services in distributed antenna systems having a central unit and remote units configured to time-division multiplex (TDM) downlink and/or uplink management signals into time slots to form a TDM management frame signal. In this manner, collision will not occur between multiple management signals communicated over a common communications medium at the same time in the distributed antenna system. Collision detection and management mechanism can add design complexity, cost by requiring additional components, and require additional area on electronic boards. The TDM management frame signal may also be modulated at a carrier frequency before being combined with RF communications signals so that the combined signals are within a linear range of shared certain communications components to reduce cost and area.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: May 15, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Ami Hazani, Ofer Nisan
  • Patent number: 9967754
    Abstract: Monitoring non-supported wireless spectrum within a coverage area of a distributed antenna system (DAS) in which a listening module connected to a remote unit of the DAS monitors non-supported wireless frequencies (i.e., frequencies that are outside the frequency ranges supported by the downlink and uplink signals of the DAS), via one or more antennas. The listening module also transmits the wireless frequencies to a monitoring module connected to head-end equipment (HEE) of the DAS. In that manner, a monitoring module can use an existing DAS infrastructure to monitor non-supported portions of the wireless spectrum at remote locations. In addition to avoiding the need to run a parallel DAS infrastructure, the disclosed arrangements are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: May 8, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, Liav Moshe Daniel, Yoni Henia, Rami Reuven, Motti Yakobi