Abstract: An optical system comprising: an optical assembly having a first optical surface and a rear optical surface, said optical assembly comprising at least three optical elements; an optical fiber comprising a core portion with a mode field diameter (MFD) expanded region optically coupled to the rear optical surface of the optical assembly, the optical fiber comprising a core region doped with chlorine in a concentration greater than 0.5 wt %, wherein the MFD expanded region is less than 5 cm in length, and has MFD at the fiber end coupled to the optical assembly that is a least 20% greater than the MFD at other end of the optical fiber; an optical signal source coupled to first optical surface of the optical assembly, such that the optical signal provided by the optical signal source is routed along an optical path formed by the optical assembly to the mode field diameter expanded region of said optical fiber.
Abstract: In embodiments, a glass-ceramic article includes from about 55 wt. % to about 80 wt. % SiO2; from about 2 wt. % to about 20 wt. % Al2O3; from about 5 wt. % to about 20 wt. % Li2O; a non-zero amount of P2O5 less than or equal to 6 wt. %; and from about 3 wt. % to less than 8 wt. % ZrO2. The glass-ceramic grains having a longest dimension of less than 100 nm.
Type:
Grant
Filed:
December 11, 2020
Date of Patent:
May 3, 2022
Assignee:
Corning Incorporated
Inventors:
George Halsey Beall, Qiang Fu, Charlene Marie Smith
Abstract: An optical element including an optically transparent lens which defines a curved surface having a steepness given by an R/# of from about 0.5 to about 1.0. A film is positioned on the curved surface. The film includes an index layer. A composite layer is positioned on the curved surface having a refractive index greater than the index layer. The composite layer includes HfO2 and Al2O3. The composite layer has a mole fraction X of HfO2, wherein X is from about 0.05 to about 0.95 and a mole fraction of Al2O3 in the composite layer is 1?X.
Type:
Grant
Filed:
May 2, 2019
Date of Patent:
May 3, 2022
Assignee:
Corning Incorporated
Inventors:
Ming-Huang Huang, Chang-gyu Kim, Hoon Kim, Soo Ho Park, Jue Wang
Abstract: By this invention processes are provided for the conversion of carbohydrate to ethylene glycol by retro-aldol catalysis and sequential hydrogenation using control methods having at least one of acetol (hydroxyacetone) and a tracer as inputs.
Type:
Grant
Filed:
September 24, 2020
Date of Patent:
May 3, 2022
Assignee:
Iowa Corn Promotion Board
Inventors:
Ray Chrisman, Donald Bunning, Mark Nunley, Brooke Albin, Michael Bradford, Louis A. Kapicak, David James Schreck
Abstract: The present disclosure provides coating compositions that can be cured at fast rates as well as coatings and cured products formed from the coating compositions. The coating compositions include an acylgermane photoinitiator that leads to fast cure speeds. The coating compositions include primary coating compositions and secondary coating compositions. The coating compositions can be cured to form primary and secondary coatings of optical fibers. The primary coatings feature low Young's modulus and high tear strength. The primary coatings provide good microbending performance and are resistant to defect formation during the fiber draw process and subsequent handling operations. The secondary coatings feature high Young's modulus and good puncture resistance.
Abstract: A method of controlling a flowrate of molten material at a downstream location in a glass manufacturing process can include mixing the molten material at an upstream location positioned upstream from the downstream location relative to a flow direction of the molten material with a shaft including a plurality of protrusions. The method can also include measuring a torque of the shaft, measuring a level of the molten material at the upstream location, and calculating a viscosity of the molten material at the upstream location based on the measured torque and the measured level. In addition, the method can include estimating the flowrate based on the calculated viscosity, and controlling the flowrate at the downstream location based on the estimated flowrate.
Type:
Grant
Filed:
August 16, 2017
Date of Patent:
May 3, 2022
Assignee:
Corning Incorporated
Inventors:
Mark Alan Cook, Franck Olivier Hounkpevi, Pierre Laronze
Abstract: Retro-aldol processes are disclosed that use very low concentrations of retro-aldol catalyst in combination with hydrogenation catalyst of certain activities, sizes and spatial dispersions to obtain the high selectivities to ethylene glycol.
Type:
Grant
Filed:
September 24, 2020
Date of Patent:
May 3, 2022
Assignee:
Iowa Corn Promotion Board
Inventors:
David James Schreck, Mark Nunley, Donald Bunning, Brooke Albin, Louis A. Kapicak, Michael Bradford
Abstract: Phosphate glasses and glass-ceramics exhibit a positive percent kill as measured by United States EPA Test Method for Efficacy of Copper Alloy Surfaces as a Sanitizer and/or have a CIELAB L* value below 35, CIELAB a* and b* values within 5 of zero.
Type:
Grant
Filed:
July 23, 2021
Date of Patent:
May 3, 2022
Assignee:
Corning Incorporated
Inventors:
Timothy Michael Gross, Alexandra Lai Ching Kao Andrews Mitchell
Abstract: A fiber optic connector for connecting one or more optical fibers to a fiber optic component includes: a ferrule configured to receive the one or more optical fibers; a ferrule holder configured to be coupled to the ferrule, wherein the ferrule and ferrule holder forms a ferrule support assembly when coupled together; and a shroud configured to be positioned about the ferrule support assembly and connectable to the fiber optic component. The ferrule support assembly and the shroud are configured so that the ferrule support assembly is movable relative to the shroud to positions outside the shroud when the shroud is disconnected from the fiber optic component, and the ferrule support assembly is confined within the shroud when the shroud is connected to the fiber optic component. A method of forming a fiber optic assembly using such a fiber optic connector is also disclosed.
Type:
Grant
Filed:
August 31, 2020
Date of Patent:
May 3, 2022
Assignee:
Corning Research & Development Corporation
Inventors:
Ashley Wesley Jones, Wei-Cheng Lee, Hsiang-Peng Liao, Louis Edward Parkman, III, Ming-Sung Wu
Abstract: A melting apparatus is disclosed, the melting apparatus including a melting vessel with a back wall, a front wall, a first side wall, a second side wall and a longitudinal centerline extending therebetween and a width between the first and second side walls orthogonal to the centerline. The melting vessel further includes a first feed screw including a first axis of rotation and a second feed screw including a second axis of rotation, the first axis of rotation positioned between the longitudinal centerline and the first side wall and the second axis of rotation positioned between the longitudinal centerline and the second side wall. The positions of either one or both the first and second axes of rotation are located from a respective side wall a distance that is equal to or less than about 15% of the width of the melting vessel.
Type:
Grant
Filed:
August 24, 2017
Date of Patent:
May 3, 2022
Assignee:
Corning Incorporated
Inventors:
Mark Alan Cook, Zagorka Dacic Gaeta, Sung-Hwan Lee, Daniel Arthur Nolet, Guido Peters
Abstract: A borate glass includes from 25.0 mol % to 70.0 mol % B2O3; from 0.0 mol % to 10.0 mol % SiO2; from 0.0 mol % to 15.0 mol % Al2O3; from 3.0 mol % to 15.0 mol % Nb2O5; from 0.0 mol % to 12.0 mol % alkali metal oxides; from 0.0 mol % to 5.0 mol % ZnO; from 0.0 mol % to 8.0 mol % ZrO2; from 0.0 mol % to 15.0 mol % TiO2; less than 0.5 mol % Bi2O3; and less than 0.5 mol % P2O5. The optical borate glass includes a sum of B2O3+Al2O3+SiO2 from 35.0 mol % to 76.0 mol %, a sum of CaO+MgO from 0.0 mol % to 35.5 mol %. The borate glass has a refractive index, measured at 587.6 nm, of greater than 1.70, a density of less than 4.50 g/cm3, and an Abbe number, VD, from 20.0 to 47.0.
Abstract: A method for aligning multiple optical components in an optical system including placing a sphere at a first position that is at a center of curvature of a first optical component, and aligning a focus of a first reference signal with the sphere at the first position. Then, moving the sphere along an axis of optical symmetry to a second position that is at a center of curvature of a second optical component, and aligning a focus of a second reference signal with the sphere at the second position. The first optical component is aligned with the first reference signal and fixing the first optical component, and the second optical component is aligned with the second reference signal and fixing the second optical component.
Type:
Grant
Filed:
July 9, 2020
Date of Patent:
April 26, 2022
Assignee:
Corning Incorporated
Inventors:
David Richard Bonin, Joshua Monroe Cobb, Brian Monroe McMaster
Abstract: A glass-ceramic includes a silicate-containing glass and crystals within the silicate-containing glass. The crystals include non-stoichiometric tungsten and/or molybdenum sub-oxides, and the crystals are intercalated with dopant cations.
Abstract: Miniaturized electrical connector systems are disclosed herein. In exemplary aspects disclosed herein, the connector system includes a twinaxial female connector having a housing and at least one dielectric positioned therein. The at least one dielectric defines two parallel channels configured to receive at least a portion of two conductors of a twinaxial cable. The twinaxial female connector includes an oval interface configured to orient and align the conductors of the twinaxial cable with mating pins of a male connector. The twinaxial female connector further includes two spring-type interconnects positioned within the oval interface, each configured to directly contact a conductor of the twinaxial cable and a mating pin of the male connector. The twinaxial female connector further includes a retaining clip attached to an exterior of the housing with a lever arm biased towards and pivotable from an engaged orientation. Such features reduce the manufacturing complexity, cost, and overall size.
Type:
Grant
Filed:
July 26, 2018
Date of Patent:
April 26, 2022
Assignee:
Corning Optical Communications RF LLC
Inventors:
Thomas Edmond Flaherty, IV, Daniel Michael Grabowski, Brian Lyle Kisling
Abstract: A honeycomb structure (110) includes intersecting porous walls (106). Inlet channels (108i) and outlet channels (108o) are formed by the intersecting porous walls (106), wherein the inlet channels (108i) comprise inlet hydraulic diameters (HDi) and the outlet channels (108o) comprise outlet hydraulic diameters (HDo). The inlet channels (108i) comprise inlet corners (220i) with inlet corner radii (Ri) and the outlet channels (108o) comprise outlet corners (2200) with outlet corner radii (Ro). A centerpost (124) is defined by adjacent opposing inlet corners (220i) of two of the inlet channels (108i) and adjacent opposing outlet corners (2200) of two of the outlet channels (108o). A first diagonal length (D1) is a shortest distance between the opposing outlet corners (220o) of the two outlet channels (108o) and a second diagonal length (D2) is a shortest distance between the opposing inlet corners (220i) of the two inlet channels (108i).
Type:
Grant
Filed:
May 3, 2019
Date of Patent:
April 26, 2022
Assignee:
Corning Incorporated
Inventors:
Thomas William Brew, Priyank Paras Jain, Konstantin Vladimirovich Khodosevich, John M Larson
Abstract: Shingle blanks including a first fold region, a second fold region, a third region, a lower edge and an upper edge are provided. The shingle blank has a length. The first and second fold regions extend substantially across the length of the shingle blank. The second fold region is positioned between the first and third fold regions. A first perforation line is positioned between the second and third fold regions. A second perforation line is positioned between the first and second fold regions. A reinforcement material is positioned over the first perforation line and configured to reinforce the first perforation line. The reinforcement material includes apertures configured to allow an asphalt coating to bleed through the reinforcement material. The first and second perforation lines facilitate folding of the first and second fold regions on top of the third region to form a three layered stack.
Abstract: A method for assigning a percentage of a CSAT time cycle to each radio node (RN) in a plurality of RNs that belong to a small cell radio access network (RAN) having a central controller includes: (i) for each time cycle period during which the RNs share a channel with one or more nodes that employ a different radio access technology (RAT), assigning a default occupancy percentage of the time cycles to each of the RNs; (ii) determining if the default occupancy percentage is able to be increased without violating one or more co-existence principles pre-established for the RAT employed by the RNs in the RAN and the different RAT; (iii) increasing the occupancy percentage of the first RN if it is determined that the default occupancy percentage is able to be increased without violating the co-existence principles; and (iv) sequentially repeating (ii)-(iii) for each remaining RN in the RAN.
Abstract: A glass having from greater than or equal to about 0.1 mol. % to less than or equal to about 20 mol. % Ho2O3, and one or more chromophores selected from V, Cr, Mn, Fe, Co, Ni, Se, Pr, Nd, Er, Yb, and combinations thereof. The amount of Ho2O3 (mol. %) is greater than or equal to 0.7 (CeO2 (mol. %)+Pr2O3 (mol. %)+Er2O3 (mol. %)). The glass can include one or more fluorescent ions selected from Cu, Sn, Ce, Eu, Tb, Tm, and combinations thereof in addition to, or in place of the chromophores. The glass can also include multiple fluorescent ions.
Type:
Grant
Filed:
January 6, 2020
Date of Patent:
April 19, 2022
Assignee:
Corning Incorporated
Inventors:
Matthew John Dejneka, Timothy James Kiczenski
Abstract: The single mode optical fiber disclosed herein has a core, an inner cladding, a trench and an outer cladding, along with a non-glass protective coating. The refractive index profile of the optical fiber is such that the optical fiber has relatively low bend loss at both small and large bend diameters. The relative refractive indices of the inner cladding, trench and outer cladding are such that a tunneling point that arises during bending is pushed out beyond the trench and thus sufficiently far away from the core so that bending losses for both small and large radius bends are relatively small.