Patents Assigned to Corning
  • Patent number: 11192986
    Abstract: An environmentally friendly, aqueous binder composition that includes a metal salt and a polyol is provided. The metal salt may be a water soluble salt, including salts of boron, aluminum, gallium, indium, tin, zirconium, thallium, lead, and bismuth. The polyol may include water miscible or water soluble polymeric alcohols including polyvinyl alcohol. The binder composition may be used in the formation of insulation materials and non-woven mats, among other products.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: December 7, 2021
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Bryan Alan Albani, Jesus M. Hernandez-Torres, Jose Mendez-Andino, Scott William Schweiger
  • Patent number: 11186518
    Abstract: A method of making a glass article, for example a glass light guide plate comprising at least one structured surface including a plurality of channels and peaks. The glass article may be suitable for enabling one dimensional dimming when used in a backlight unit for use as an illuminator for liquid crystal display devices.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: November 30, 2021
    Assignee: Corning Incorporated
    Inventors: Tracie Lynne Carleton, Leonard Charles Dabich, II, David Alan Deneka, Mandakini Kanungo, Shenping Li, Xiang-Dong Mi, Mark Alejandro Quesada, Wageesha Senaratne, John Charles Speeckaert, Louis Joseph Stempin, Jr., Wanda Janina Walczak, Haregewine Tadesse Woldegiworgis
  • Patent number: 11186060
    Abstract: Systems and processes of cutting and drilling in a target substrate uses a laser (e.g., a pulsed laser) and an optical system to generate a line focus of the laser beam within the target substrate, such as a glass substrate sheet, are provided. The laser cutting and drilling system and process creates holes or defects that, in certain embodiments, extend the full depth of the glass sheet with each individual laser pulse, and allows the laser system to cut and separate the target substrate into any desired contour by creating a series of perforations that form a contour or desired part shape. Since a glass substrate sheet is brittle, cracking will then follow the perforated contour, allowing the glass substrate sheet to separate into any required shape defined by the perforations.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: November 30, 2021
    Assignee: Corning Incorporated
    Inventors: Kristopher Allen Wieland, Garrett Andrew Piech, John Tyler Keech, Jeffrey Mathew Clark
  • Patent number: 11189900
    Abstract: A balun is disclosed and includes a dielectric substrate defining a first surface and a second surface. The balun includes a first output port including a first output ground portion and first output power portion; a second output port including a second output ground portion and a second output power portion; and an input port including an input ground portion and input power portion. The first output ground portion, the second output ground portion, and the input ground portion are coupled at a ground junction portion. The first output power portion, the second output power portion, and the input power portion are coupled at a power junction portion. The first output power portion, the second output power portion, and the input power portion are positioned on the first surface. The first output ground portion, the second output ground portion, and the input ground portion are positioned on the second surface.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: November 30, 2021
    Assignee: Corning Research & Development Corporation
    Inventor: Jesús Anzoátegui Cumana Morales
  • Patent number: 11190230
    Abstract: Wide bandwidth digital pre-distortion (DPD) in a remote unit(s) for a wireless communications system (WCS) is disclosed. In embodiments disclosed herein, a remote unit(s) includes at least two transceiver circuits, each configured to process (e.g., perform DPD) a respective downlink digital communications signal corresponding to a portion of the carrier bandwidth. Each of the transceiver circuits is further configured to convert the respective downlink digital communications signal into a respective downlink RF communications signal. The respective downlink RF communications signals generated by the transceiver circuits are subsequently combined to form a downlink RF communications signal(s) associated with the carrier bandwidth.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 30, 2021
    Assignee: Corning Research & Development Corporation
    Inventors: Yury Abramov, Roi Yosy Ziv
  • Patent number: 11186696
    Abstract: Reversibly cross-linkable foam is provided. The reversibly cross-linked foam includes a first polymeric material, at least one reversibly cross-linkable monomer polymerized with the first polymeric material, and at least one blowing agent. The reversibly cross-linkable co-polymeric foam is thermally stable at temperatures of at least 10 degrees higher than otherwise identical polymeric foam that does not include the reversibly cross-linkable agent polymerized with the first polymeric material.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: November 30, 2021
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventor: Matthew Daniel Gawryla
  • Patent number: 11186516
    Abstract: A substrate for use in fluorescent-detection methods is provided. The substrate includes at least one glass substrate portion, the at least one glass substrate portion including: between about 60 mol % to about 80 mol % SiO2; between about 0 mol % to about 15 mol % Al2O3; between about 0 mol % to about 15 mol % B2O3; and about 2 mol % to about 50 mol % RxO, wherein R is any one or more of Li, Na, K, Rb, Cs and x is 2, or wherein R is any one or more of Zn, Mg, Ca, Sr or Ba and x is 1.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: November 30, 2021
    Assignee: Corning Incorporated
    Inventors: Melissann Marie Ashton-Patton, Adam James Ellison, Ellen Anne King, Joydeep Lahiri, Shawn Michael O'Malley
  • Patent number: 11187859
    Abstract: Fiber optic connectors (10), cable assemblies (100) and methods for making the same are disclosed. In one embodiment, the fiber optic connector (10) comprises a ferrule assembly (52), a housing (20) and a cap (60). The housing (20) comprises a longitudinal passageway (22) between a rear end (21) and a front end (23), and a ferrule assembly side-loading pocket (40) for receiving the ferrule assembly (52). The ferrule assembly (52) and housing (20) cooperate to inhibit movement of the assembly during manufacturing. Fiber optic connector 10 may include other features as desired such as keying portion (20KP) or at least one locking feature (20L) integrally formed in the housing (20).
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: November 30, 2021
    Assignee: Corning Research & Development Corporation
    Inventors: Joel Christopher Rosson, Michael Wimmer
  • Patent number: 11187853
    Abstract: An optical fiber comprising: (a) a core having an outer radius r1; (b) a cladding having an outer radius r4<32.5 microns; (c) a primary coating surrounding the cladding having an outer radius r5, a thickness tP>8 microns, in situ modulus EP?0.35 MPa and a spring constant ?P<2.0 MPa, where ?P=2EP r4/tP; and (d) a secondary coating surrounding said primary coating, the secondary coating having an outer radius r6 and a thickness tS=r6?r5, and in situ modulus ES of 1200 MPa or greater; tS>8 microns, r6?56 microns. The fiber has a mode field diameter MFD greater than 8.2 microns at 1310 nm; a fiber cutoff wavelength of less than 1310 nm; and a bend loss at a wavelength of 1550 nm, when wrapped around a mandrel having a diameter of 10 mm, of less than 1.0 dB/turn.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 30, 2021
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Tandon
  • Patent number: 11184743
    Abstract: Distributed communications systems (DCSs) supporting virtualization of remote units as citizens band radio service (CBRS) devices (CBSDs) are disclosed. In examples discussed herein, the DCS includes a routing circuit that is coupled to a number of remote units configured to communicate a downlink communications signal(s) and an uplink communications signal(s) in one or more CBRS channels. In this regard, a CBRS control circuit is provided to present each of the remote units as a uniquely identifiable virtual CBSD to a spectrum access system (SAS) and facilitate communications between the SAS and the remote units. As such, the SAS may be able spoofed to treat the uniquely identifiable virtual CBSD as real CBSDs to uniquely identify each of the remote units for CBRS channel assignment and/or transmission power control. As a result, it may be possible to support CBRS in the DCS in compliance with the Federal Communications Commission (FCC) requirements.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: November 23, 2021
    Assignee: Corning Research & Development Corporation
    Inventor: Dror Harel
  • Patent number: 11180404
    Abstract: A slot orifice design that delivers glass ribbon at a uniform temperature and flow across the slot orifice width is provided. The slot orifice design can include a transition section, a pressure tank, and a slot extension.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: November 23, 2021
    Assignee: Corning Incorporated
    Inventors: Olivier Fournel, Allan Mark Fredholm
  • Patent number: 11180403
    Abstract: Provided is a glass product manufacturing apparatus. The glass product manufacturing apparatus includes a furnace including a gas heating zone and an electric heating zone, a first heat exchange module configured to recover heat from the furnace, and a pump configured to drive flow of a heat transfer medium fluid passing through the first heat exchange module, wherein at least a part of the first heat exchange module is thermally coupled with at least a part of an external surface of the electric heating zone. The glass product manufacturing apparatus may reduce defect rate while exhibiting high energy efficiency.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: November 23, 2021
    Assignee: Corning Incorporated
    Inventors: Jang-hun An, Byung-chul Jeon, Sun-joon Kim, Yong-kyu Kwon, Ho-soon Lee, Seong-kuk Lee, Hyun-gyu Park
  • Patent number: 11181687
    Abstract: An optical fiber comprising: a core having an outer radius r1; a cladding having an outer radius r4<45 microns; a primary coating surrounding the cladding and having an outer radius r5 and a thickness tp>8 microns, the primary coating having in situ modulus EP of 0.35 MPa or less and a spring constant ?P<1.6 MPa, where ?P=2EP r4/tP; and a secondary coating surrounding said primary coating, the secondary coating having an outer radius r6, a thickness tS=r6?r5, in situ modulus ES of 1200 MPa or greater, wherein >10 microns and r6?85 microns. The fiber has a mode field diameter MFD greater than 8.2 microns at 1310 nm; a cutoff wavelength of less than 1310 nm; and a bend loss at a wavelength of 1550 nm, when wrapped around a mandrel having a diameter of 10 mm, of less than 1.0 dB/turn.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 23, 2021
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Tandon, Bryan William Wakefield
  • Patent number: 11181685
    Abstract: The present disclosure provides optical fibers with an impact-resistant coating system. The fibers feature low microbending and high mechanical reliability. The coating system includes a primary coating and a secondary coating. The primary coating and secondary coating have reduced thickness to provide reduced radius fibers without sacrificing protection. The primary coating has a low spring constant and sufficient thickness to resist transmission of force to the glass fiber. The secondary coating has high puncture resistance. The outer diameter of the optical fiber is less than or equal to 200 ?m.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: November 23, 2021
    Assignee: Corning Incorporated
    Inventors: Arash Abedijaberi, Scott Robertson Bickham, Darren Andrew Stainer, Pushkar Tandon
  • Patent number: 11180575
    Abstract: Improved thermally inhibited starch is disclosed and methods of making such starch are disclosed. In some embodiments a thermally inhibited starch has improved whiteness and flavor. In some embodiments a method for making a thermally inhibited starch includes providing adding a buffer and an acid to a starch to obtain a pH adjusted starch having an acidic pH and thermally inhibiting the pH adjusted starch. The technology further pertains to methods of making the thermally inhibited starch in batch, continuous, continuous-like process or combinations thereof.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: November 23, 2021
    Assignee: Corn Products Development, Inc.
    Inventors: Christopher Lane, Kamlesh Shah, Tarak Shah
  • Patent number: 11180777
    Abstract: The present disclosure relates to method and compositions for generating proteins. In particular, the present disclosure relates to electroporation mediated gene delivery in the generation of recombinant proteins (e.g., drug metabolizing enzyme and transporter vesicles) in mammalian cells.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: November 23, 2021
    Assignee: Corning Incorporated
    Inventors: Na Li, Jie Wang
  • Patent number: 11180410
    Abstract: This disclosure is directed to an improved process for making glass articles having optical coating and easy-to clean coating thereon, an apparatus for the process and a product made using the process. In particular, the disclosure is directed to a process in which the application of the optical coating and the easy-to-clean coating can be sequentially applied using a single apparatus. Using the combination of the coating apparatus and the substrate carrier described herein results in a glass article having both optical and easy-to-clean coating that have improved scratch resistance durability and optical performance, and in addition the resulting articles are “shadow free.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: November 23, 2021
    Assignee: Corning Incorporated
    Inventors: Christopher Morton Lee, Xiao-feng Lu, Michael Xu Ouyang, Junhong Zhang
  • Patent number: 11178556
    Abstract: Optimizing performance between a wireless distribution system (WDS) and a macro network(s). In this regard, a macro network optimization system is configured to detect a performance indicator(s) between a WDS and a macro network and optimize the performance of the macro network based on the detected performance indicator(s). The macro network optimization system analyzes a macro network performance report provided by the macro network and/or a WDS performance report provided by the WDS to detect the performance indicator(s) between the WDS and the macro network. The macro network optimization system reconfigures operations of one or more macro network elements to optimize performance between the WDS and the macro network based on the detected performance indicator(s). By detecting and optimizing performance between the WDS and the macro network, capacity, throughput, and/or coverage of the WDS and the macro network can be improved, thus providing better quality of experience (QoE).
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: November 16, 2021
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, Dror Harel, Yair Zeev Shapira
  • Patent number: D936610
    Type: Grant
    Filed: November 30, 2019
    Date of Patent: November 23, 2021
    Assignee: Corning Optical Communications RF LLC
    Inventors: Daniel Michael Grabowski, Casey Roy Stein
  • Patent number: D936611
    Type: Grant
    Filed: November 30, 2019
    Date of Patent: November 23, 2021
    Assignee: Corning Optical Communications RF LLC
    Inventors: Daniel Michael Grabowski, Casey Roy Stein