Patents Assigned to CorWave SA
  • Patent number: 11191946
    Abstract: Systems and methods for generating blood flow with a pump incorporating linear bearing technology are provided. The pump may include an actuator assembly, a moving assembly, and a linear hydrodynamic or thin-film bearing positioned within a housing. The moving assembly may include at least one magnet and the actuator assembly may include a magnetic assembly for selectively generating a magnetic field to cause linear reciprocating movement of the moving assembly with respect to the actuator assembly. The linear hydrodynamic or thin-film bearing may include a bearing portion on the moving assembly that is in fluid communication with a bearing portion on the actuator assembly or pump housing. The system may involve an implantable pump, an extracorporeal battery and a controller coupled to the implantable pump. The implantable pump may be suitable for use as a left ventricular assist device (LVAD).
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: December 7, 2021
    Assignee: CorWave SA
    Inventors: Trevor Snyder, Carl N. Botterbusch, Petrus Le Blanc, Bastien Wittig
  • Publication number: 20210275797
    Abstract: Systems and methods for generating blood flow with a pump incorporating linear bearing technology are provided. The pump may include an actuator assembly, a moving assembly, and a linear hydrodynamic or thin-film bearing positioned within a housing. The moving assembly may include at least one magnet and the actuator assembly may include a magnetic assembly for selectively generating a magnetic field to cause linear reciprocating movement of the moving assembly with respect to the actuator assembly. The linear hydrodynamic or thin-film bearing may include a bearing portion on the moving assembly that is in fluid communication with a bearing portion on the actuator assembly or pump housing. The system may involve an implantable pump, an extracorporeal battery and a controller coupled to the implantable pump. The implantable pump may be suitable for use as a left ventricular assist device (LVAD).
    Type: Application
    Filed: March 5, 2021
    Publication date: September 9, 2021
    Applicant: CorWave SA
    Inventors: Trevor SNYDER, Carl N. BOTTERBUSCH, Petrus LE BLANC, Bastien WITTIG
  • Patent number: 11097091
    Abstract: An implantable cardiovascular blood pump system is provided, suitable for use as a left ventricular assist device (LVAD) system, having an implantable cardiovascular pump, an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable cardiovascular pump. The implantable cardiovascular blood pump includes a coaxial inflow cannula and outflow cannula in fluid communication with one another and with a pumping mechanism. The pumping mechanism may be a vibrating membrane pump which may include a flexible membrane coupled to an electromagnetic actuator assembly that causes wavelike undulations to propagate along the flexible membrane to propel blood through the implantable cardiovascular pump.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: August 24, 2021
    Assignee: CorWave SA
    Inventors: Carl N. Botterbusch, Silvere Lucquin, Jean-Baptiste Drevet, Adrien Guignabert, Patrick Meneroud
  • Publication number: 20210170160
    Abstract: An implantable pump system is provided, including an implantable blood pump suitable for use as a partial support assist device, the system further including an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable pump. The implantable pump includes a flexible membrane coupled to an electromagnetic actuator including a magnetic assembly and electromagnetic assembly, so that when the electromagnetic assembly is energized, the electromagnetic assembly causes wavelike undulations to propagate along the flexible membrane to propel blood through the implantable pump. The controller may be programmed by a programmer to operate at frequencies and duty cycles that mimic physiologic flow rates and pulsatility while operating in an efficient manner that avoids thrombus formation, hemolysis and/or platelet activation.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 10, 2021
    Applicant: CorWave SA
    Inventors: Louis-Emmanuel LE DUC DE LILLERS, Francois CORNAT, Jean-Baptiste DREVET, Carl N. BOTTERBUSCH, Alexandra SCHMIDT
  • Publication number: 20210172429
    Abstract: The present invention relates to an undulating-membrane fluid circulator having an intake port (3), a pump housing (4) delimiting a propulsion chamber (5), a discharge port (6), and an undulating membrane (2) paired with a drive means permitting an undulating movement of the membrane (2) between the upstream (8) and downstream (9) edges thereof, the undulating membrane (2) being capable of moving a fluid towards the discharge port (6). According to the invention, the circulator further comprises at least one means (7) for guiding the fluid, said means being disposed in the fluid propulsion chamber (5) near one of the edges (8, 9) of the QI undulating membrane (2) and making it possible to channel the fluid flow in a direction substantially parallel to the displacement of the wave along the membrane (2).
    Type: Application
    Filed: November 9, 2018
    Publication date: June 10, 2021
    Applicant: CorWave SA
    Inventors: Jean-Baptiste DREVET, Harold GUILLEMIN
  • Patent number: 10933181
    Abstract: An implantable pump system is provided, including an implantable blood pump suitable for use as a partial support assist device, the system further including an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable pump. The implantable pump includes a flexible membrane coupled to an electromagnetic actuator including a magnetic assembly and electromagnetic assembly, so that when the electromagnetic assembly is energized, the electromagnetic assembly causes wavelike undulations to propagate along the flexible membrane to propel blood through the implantable pump. The controller may be programmed by a programmer to operate at frequencies and duty cycles that mimic physiologic flow rates and pulsatility while operating in an efficient manner that avoids thrombus formation, hemolysis and/or platelet activation.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: March 2, 2021
    Assignee: CorWave SA
    Inventors: Louis-Emmanuel Le Duc De Lillers, Francois Cornat, Jean-Baptiste Drevet, Carl N. Botterbusch, Alexandra Schmidt
  • Publication number: 20200368417
    Abstract: An implantable pump system is provided, suitable for use as a left ventricular assist device (LVAD) system, having an implantable pump, a battery, a controller, and a programmer. The implantable pump includes a flexible membrane coupled to an actuator assembly via a skirt that extends toward the inlet of the pump and curves to guide blood toward the outlet. The actuator assembly is magnetically engagable with electromagnetic coils, so that when the electromagnetic coils are energized, the actuator assembly causes wavelike undulations to propagate along the flexible membrane to propel blood from the inlet, across the skirt, and through the outlet of the implantable pump. The controller may be programmed by a programmer to operate at frequencies and duty cycles that mimic physiologic flow rates and pulsatility while operating in an efficient manner that avoids thrombus formation, hemolysis and/or platelet activation.
    Type: Application
    Filed: November 22, 2018
    Publication date: November 26, 2020
    Applicant: CorWave SA
    Inventors: Luc POLVERELLI, Leopold MAINE, Carl N. BOTTERBUSCH, Silvere LUCQUIN, Jean-Baptiste DREVET, Adrien GUIGNABERT, Patrick MENEROUD, Alexandra SCHMIDT, Pier-Paolo MONTICONE
  • Patent number: 10799625
    Abstract: Systems and methods for controlling an implantable pump are provided. For example, the exemplary controller for controlling the implantable pump may only rely on the actuator's current measurement. The controller is robust to pressure and flow changes inside the pump head, and allows fast change of pump's operation point. For example, the controller includes, a two stage, nonlinear position observer module based on a reduced order model of the electromagnetic actuator. The controller includes an algorithm that estimates the position of the moving component of the implantable pump based on the actuator's current measurement and adjusts operation of the pump accordingly. Alternatively, the controller may rely on position measurements and/or velocity estimations.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: October 13, 2020
    Assignee: CorWave SA
    Inventors: Mattias Scheffler, Nicolas Barabino, Marc Rebillat, Eric Monteiro, Nazih Mechbal
  • Publication number: 20200289731
    Abstract: Systems and methods for controlling an implantable pump are provided. For example, the exemplary controller for controlling the implantable pump may only rely on the actuator's current measurement. The controller is robust to pressure and flow changes inside the pump head, and allows fast change of pump's operation point. For example, the controller includes, a two stage, nonlinear position observer module based on a reduced order model of the electromagnetic actuator. The controller includes an algorithm that estimates the position of the moving component of the implantable pump based on the actuator's current measurement and adjusts operation of the pump accordingly. Alternatively, the controller may rely on position measurements and/or velocity estimations.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 17, 2020
    Applicant: CorWave SA
    Inventors: Mattias SCHEFFLER, Nicolas BARABINO, Marc REBILLAT, Eric MONTEIRO, Nazih MECHBAL
  • Publication number: 20190381227
    Abstract: An implantable pump system is provided, suitable for use as a left ventricular assist device (LVAD) system, having an implantable pump, an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable pump. The implantable pump includes a flexible membrane coupled to an actuator assembly that is magnetically engagable with electromagnetic coils, so that when the electromagnetic coils are energized, the actuator assembly causes wavelike undulations to propagate along the flexible membrane to propel blood from through the implantable pump. The controller may be programmed by a programmer to operate at frequencies and duty cycles that mimic physiologic flow rates and pulsatility while operating in an efficient manner that avoids thrombus formation, hemolysis and/or platelet activation.
    Type: Application
    Filed: August 30, 2019
    Publication date: December 19, 2019
    Applicant: CorWave SA
    Inventors: Carl N. BOTTERBUSCH, Silvere LUCQUIN, Pier-Paolo MONTICONE, Jean-Baptiste DREVET, Adrien GUIGNABERT, Patrick MENEROUD
  • Patent number: 10398821
    Abstract: An implantable pump system is provided, suitable for use as a left ventricular assist device (LVAD) system, having an implantable pump, an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable pump. The implantable pump includes a flexible membrane coupled to an actuator assembly that is magnetically engagable with electromagnetic coils, so that when the electromagnetic coils are energized, the actuator assembly causes wavelike undulations to propagate along the flexible membrane to propel blood from through the implantable pump. The controller may be programmed by a programmer to operate at frequencies and duty cycles that mimic physiologic flow rates and pulsatility while operating in an efficient manner that avoids thrombus formation, hemolysis and/or platelet activation.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: September 3, 2019
    Assignee: CorWave SA
    Inventors: Carl N. Botterbusch, Silvere Lucquin, Pier-Paolo Monticone, Jean-Baptiste Drevet, Adrien Guignabert, Patrick Meneroud
  • Publication number: 20190125949
    Abstract: An implantable cardiovascular blood pump system is provided, suitable for use as a left ventricular assist device (LVAD) system, having an implantable cardiovascular pump, an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable cardiovascular pump. The implantable cardiovascular blood pump includes a coaxial inflow cannula and outflow cannula in fluid communication with one another and with a pumping mechanism. The pumping mechanism may be a vibrating membrane pump which may include a flexible membrane coupled to an electromagnetic actuator assembly that causes wavelike undulations to propagate along the flexible membrane to propel blood through the implantable cardiovascular pump.
    Type: Application
    Filed: December 27, 2018
    Publication date: May 2, 2019
    Applicant: CorWave SA
    Inventors: Carl N. BOTTERBUSCH, Silvere LUCQUIN, Jean-Baptiste DREVET, Adrien GUIGNABERT, Patrick MENEROUD
  • Patent number: 10188779
    Abstract: An implantable pump system is provided, suitable for use as a left ventricular assist device (LVAD) system, having an implantable pump, a battery, a controller, and a programmer. The implantable pump includes a flexible membrane coupled to an actuator assembly via a skirt that extends toward the inlet of the pump and curves to guide blood toward the outlet. The actuator assembly is magnetically engagable with electromagnetic coils, so that when the electromagnetic coils are energized, the actuator assembly causes wavelike undulations to propagate along the flexible membrane to propel blood from the inlet, across the skirt, and through the outlet of the implantable pump. The controller may be programmed by a programmer to operate at frequencies and duty cycles that mimic physiologic flow rates and pulsatility while operating in an efficient manner that avoids thrombus formation, hemolysis and/or platelet activation.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: January 29, 2019
    Assignee: CorWave SA
    Inventors: Luc Polverelli, Leopold Maine, Carl N. Botterbusch, Silvere Lucquin, Jean-Baptiste Drevet, Adrien Guignabert, Patrick Meneroud, Alexandra Schmidt, Pier-Paolo Monticone
  • Patent number: 10166319
    Abstract: An implantable cardiovascular blood pump system is provided, suitable for use as a left ventricular assist device (LVAD) system, having an implantable cardiovascular pump, an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable cardiovascular pump. The implantable cardiovascular blood pump includes a coaxial inflow cannula and outflow cannula in fluid communication with one another and with a pumping mechanism. The pumping mechanism may be a vibrating membrane pump which may include a flexible membrane coupled to an electromagnetic actuator assembly that causes wavelike undulations to propagate along the flexible membrane to propel blood through the implantable cardiovascular pump.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: January 1, 2019
    Assignee: CorWave SA
    Inventors: Carl N. Botterbusch, Silvere Lucquin, Jean-Baptiste Drevet, Adrien Guignabert, Patrick Meneroud
  • Publication number: 20180369469
    Abstract: An implantable pump system is provided, including an implantable blood pump suitable for use as a partial support assist device, the system further including an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable pump. The implantable pump includes a flexible membrane coupled to an electromagnetic actuator including a magnetic assembly and electromagnetic assembly, so that when the electromagnetic assembly is energized, the electromagnetic assembly causes wavelike undulations to propagate along the flexible membrane to propel blood through the implantable pump. The controller may be programmed by a programmer to operate at frequencies and duty cycles that mimic physiologic flow rates and pulsatility while operating in an efficient manner that avoids thrombus formation, hemolysis and/or platelet activation.
    Type: Application
    Filed: March 29, 2018
    Publication date: December 27, 2018
    Applicant: CorWave SA
    Inventors: Louis-Emmanuel LE DUC DE LILLERS, Francois CORNAT, Jean-Baptiste DREVET, Carl N. BOTTERBUSCH, Alexandra SCHMIDT
  • Publication number: 20180256798
    Abstract: An implantable pump system is provided, suitable for use as a left ventricular assist device (LVAD) system, having an implantable pump, an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable pump. The implantable pump includes a flexible membrane coupled to an actuator assembly that is magnetically engagable with electromagnetic coils, so that when the electromagnetic coils are energized, the actuator assembly causes wavelike undulations to propagate along the flexible membrane to propel blood from through the implantable pump. The controller may be programmed by a programmer to operate at frequencies and duty cycles that mimic physiologic flow rates and pulsatility while operating in an efficient manner that avoids thrombus formation, hemolysis and/or platelet activation.
    Type: Application
    Filed: May 10, 2018
    Publication date: September 13, 2018
    Applicant: CorWave SA
    Inventors: Carl N. BOTTERBUSCH, Silvere LUCQUIN, Pier-Paolo MONTICONE, Jean-Baptiste DREVET, Adrien GUIGNABERT, Patrick MENEROUD
  • Patent number: 9968720
    Abstract: An implantable pump system is provided, suitable for use as a left ventricular assist device (LVAD) system, having an implantable pump, an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable pump. The implantable pump includes a flexible membrane coupled to an actuator assembly that is magnetically engagable with electromagnetic coils, so that when the electromagnetic coils are energized, the actuator assembly causes wavelike undulations to propagate along the flexible membrane to propel blood from through the implantable pump. The controller may be programmed by a programmer to operate at frequencies and duty cycles that mimic physiologic flow rates and pulsatility while operating in an efficient manner that avoids thrombus formation, hemolysis and/or platelet activation.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: May 15, 2018
    Assignee: CorWave SA
    Inventors: Carl N. Botterbusch, Silvere Lucquin, Pier-Paolo Monticone, Jean-Baptiste Drevet, Adrien Guignabert, Patrick Meneroud
  • Publication number: 20170290966
    Abstract: An implantable pump system is provided, suitable for use as a left ventricular assist device (LVAD) system, having an implantable pump, an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable pump. The implantable pump includes a flexible membrane coupled to an actuator assembly that is magnetically engagable with electromagnetic coils, so that when the electromagnetic coils are energized, the actuator assembly causes wavelike undulations to propagate along the flexible membrane to propel blood from through the implantable pump. The controller may be programmed by a programmer to operate at frequencies and duty cycles that mimic physiologic flow rates and pulsatility while operating in an efficient manner that avoids thrombus formation, hemolysis and/or platelet activation.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 12, 2017
    Applicant: CorWave SA
    Inventors: Carl N. BOTTERBUSCH, Silvere LUCQUIN, Pier-Paolo MONTICONE, Jean-Baptiste DREVET, Adrien GUIGNABERT, Patrick MENEROUD
  • Publication number: 20170290967
    Abstract: An implantable cardiovascular blood pump system is provided, suitable for use as a left ventricular assist device (LVAD) system, having an implantable cardiovascular pump, an extracorporeal battery and a controller coupled to the implantable pump, and a programmer selectively periodically coupled to the controller to configure and adjust operating parameters of the implantable cardiovascular pump. The implantable cardiovascular blood pump includes a coaxial inflow cannula and outflow cannula in fluid communication with one another and with a pumping mechanism. The pumping mechanism may be a vibrating membrane pump which may include a flexible membrane coupled to an electromagnetic actuator assembly that causes wavelike undulations to propagate along the flexible membrane to propel blood through the implantable cardiovascular pump.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 12, 2017
    Applicant: CorWave SA
    Inventors: Carl N. BOTTERBUSCH, Silvere LUCQUIN, Jean-Baptiste DREVET, Adrien GUIGNABERT, Patrick MENEROUD