Patents Assigned to Crucible Intellectual Property, LLC
-
Publication number: 20140182804Abstract: The embodiments described herein relate to methods and apparatus for counter-gravity formation of BMG-containing hollow parts. In one embodiment, the BMG-containing hollow parts may be formed by first feeding a molten metal alloy in a counter-gravity direction into a mold cavity to deposit the molten metal alloy on a surface of the mold cavity and then solidifying the deposited molten metal alloy.Type: ApplicationFiled: March 6, 2014Publication date: July 3, 2014Applicants: Crucible Intellectual Property, LLC, Apple Inc.Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot Stratton, Joseph Poole, Matthew Scott, Christopher Prest
-
Publication number: 20140150933Abstract: Metallic dental prostheses made of bulk-solidifying amorphous alloys wherein the dental prosthesis has an elastic strain limit of around 1.2% or more and methods of making such metallic dental prostheses are provided.Type: ApplicationFiled: February 6, 2014Publication date: June 5, 2014Applicant: Crucible Intellectual Property, LLCInventors: Atakan Peker, Choongnyun Paul Kim, Tranquoc Thebao Nguyen
-
Patent number: 8701742Abstract: The embodiments described herein relate to methods and apparatus for counter-gravity formation of BMG-containing hollow parts. In one embodiment, the BMG-containing hollow parts may be formed by first feeding a molten metal alloy in a counter-gravity direction into a mold cavity to deposit the molten metal alloy on a surface of the mold cavity and then solidifying the deposited molten metal alloy.Type: GrantFiled: September 27, 2012Date of Patent: April 22, 2014Assignees: Apple Inc., Crucible Intellectual Property, LLCInventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
-
Patent number: 8679266Abstract: Metallic dental prostheses made of bulk-solidifying amorphous alloys wherein the dental prosthesis has an elastic strain limit of around 1.2% or more and methods of making such metallic dental prostheses are provided.Type: GrantFiled: July 18, 2011Date of Patent: March 25, 2014Assignee: Crucible Intellectual Property, LLCInventors: Atakan Peker, Choongnyun Paul Kim, Tranquoc Thebao Nguyen
-
Publication number: 20130306198Abstract: Described herein is a method of selectively depositing molten bulk metallic glass (BMG). In one embodiment, a continuous stream or discrete droplets of molten BMG is deposited to selected positions. The deposition can be repeated as needed layer by layer. One or more layers of non-BMG can be used as needed.Type: ApplicationFiled: May 16, 2012Publication date: November 21, 2013Applicants: Crucible Intellectual Property LLC, Apple Inc.Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk
-
Publication number: 20130306197Abstract: Described herein is a method of combining discrete pieces of BMG in to a BMG feedstock that has at least one dimension greater than a critical dimension of the BMG, by methods such as thermoplastic forming, pressing, extruding, folding or forging. Other embodiments relate to a bulk metallic glass (BMG) component or feedstock having discrete pieces of a BMG, wherein the BMG component or feedstock has at least one dimension greater than a critical dimension of the BMG.Type: ApplicationFiled: May 16, 2012Publication date: November 21, 2013Applicants: Crucible Intellectual Property LLC, Apple Inc.Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Quoc Tran Pham, Theodore Andrew Waniuk
-
Publication number: 20130306196Abstract: Described herein is a feedstock comprising BMG. The feedstock has a surface with an average roughness of at least 200 microns. Also described herein is a feedstock comprising BMG. The feedstock, when supported on a support during a melting process of the feedstock, has a contact area between the feedstock and the support up to 50% of a total area of the support. These feedstocks can be made by molding ingots of BMG into a mole with surface patterns, enclosing one or more cores into a sheath with a roughened surface, chemical etching, laser ablating, machining, grinding, sandblasting, or shot peening. The feedstocks can be used as starting materials in an injection molding process.Type: ApplicationFiled: May 15, 2012Publication date: November 21, 2013Applicants: Crucible Intellectual Property LLC, Apple Inc.Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Quoc Tran Pham, Theodore Andrew Waniuk
-
Publication number: 20130306199Abstract: Described herein is a feedstock including a core comprising BMG and a sheath attached the core. The sheath has a different physical property, a different chemical property or both from the core. Alternatively, the feedstock can include a sheath that encloses one or more core comprising BMG. The feedstock can be manufactured by attaching the sheath to the core, shot peening the core, etching the core, ion implanting the core, or applying a coating to the core, etc. The feedstock can be used to make a part by injection molding. The sheath can be used to adjust the composition of the core to reach the composition of the part.Type: ApplicationFiled: May 16, 2012Publication date: November 21, 2013Applicants: Crucible Intellectual Property LLC, Apple Inc.Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk, Quoc Tran Pham
-
Publication number: 20130309121Abstract: Described herein are methods of constructing a part using BMG layer by layer. In one embodiment, a layer of BMG powder is deposited to selected positions and then fused to a layer below by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part layer by layer. One or more layers of non-BMG can be used as needed. In one embodiment, layers of BMG can be cut from one or more sheets of BMG to desired shapes, stacked and fused to form the part.Type: ApplicationFiled: May 16, 2012Publication date: November 21, 2013Applicants: Crucible Intellectual Property LLC, Apple Inc.Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk, Quoc Tran Pham
-
Patent number: 8501087Abstract: Compositions for forming Au-based bulk-solidifying amorphous alloys are provided. The Au-based bulk-solidifying amorphous alloys of the current invention are based on ternary Au—Cu—Si alloys, and the extension of this ternary system to higher order alloys by the addition of one or more alloying elements. Additional substitute elements are also provided, which allow for the tailoring of the physical properties of the Au-base bulk-solidifying amorphous alloys of the current invention.Type: GrantFiled: October 17, 2005Date of Patent: August 6, 2013Assignee: Crucible Intellectual Property, LLCInventors: Jan Schroers, Atakan Peker
-
Patent number: 8485245Abstract: Embodiments herein relate to a method for forming a bulk solidifying amorphous alloy sheets have different surface finish including a “fire” polish surface like that of a float glass. In one embodiment, a first molten metal alloy is poured on a second molten metal of higher density in a float chamber to form a sheet of the first molten that floats on the second molten metal and cooled to form a bulk solidifying amorphous alloy sheet. In another embodiment, a molten metal is poured on a conveyor conveying the sheet of the first molten metal on a conveyor and cooled to form a bulk solidifying amorphous alloy sheet. The cooling rate such that a time-temperature profile during the cooling does not traverse through a region bounding a crystalline region of the metal alloy in a time-temperature-transformation (TTT) diagram.Type: GrantFiled: May 16, 2012Date of Patent: July 16, 2013Assignee: Crucible Intellectual Property, LLCInventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk, Quoc Tran Pham
-
Patent number: 8459331Abstract: Disclosed is a vacuum mold with at least a first plate and a second plate to mold materials (e.g., amorphous alloys), and a method for manufacturing parts using the mold. An ejector mechanism, to eject molded material, is enclosed within an ejector box that is vacuum sealed relative to the plates. An ejector rod for moving the mechanism is also vacuum sealed via a seal in a vacuum feed through opening. Seals are provided between adjacent interfaces of the mold parts (plates and ejector box) to vacuum seal the mold. The mold is connected to at least one vacuum source that applies vacuum pressure thereto via a first vacuum port in a first direction. A second vacuum port may also be provided to apply pressure in a second direction. A vacuum release valve may be connected to the mold to release vacuum pressure applied to the mold.Type: GrantFiled: August 8, 2011Date of Patent: June 11, 2013Assignee: Crucible Intellectual Property, LLCInventors: Quoc Tran Pham, Sean Timothy O'Keeffe
-
Patent number: 8445161Abstract: Collector plates made of bulk-solidifying amorphous alloys, the bulk-solidifying amorphous alloys providing ruggedness, lightweight structure, excellent resistance to chemical and environmental effects, and low-cost manufacturing, and methods of making such collector plates from such bulk-solidifying amorphous alloys are provided.Type: GrantFiled: December 14, 2010Date of Patent: May 21, 2013Assignee: Crucible Intellectual Property, LLCInventor: Trevor Wende
-
Patent number: 8431288Abstract: Collector plates made of bulk-solidifying amorphous alloys, the bulk-solidifying amorphous alloys providing ruggedness, lightweight structure, excellent resistance to chemical and environmental effects, and low-cost manufacturing, and methods of making such collector plates from such bulk-solidifying amorphous alloys are provided.Type: GrantFiled: March 6, 2012Date of Patent: April 30, 2013Assignee: Crucible Intellectual Property, LLCInventor: Trevor Wende
-
Publication number: 20130037232Abstract: Disclosed is a vacuum mold with at least a first plate and a second plate to mold materials (e.g., amorphous alloys), and a method for manufacturing parts using the mold. An ejector mechanism, to eject molded material, is enclosed within an ejector box that is vacuum sealed relative to the plates. An ejector rod for moving the mechanism is also vacuum sealed via a seal in a vacuum feed through opening. Seals are provided between adjacent interfaces of the mold parts (plates and ejector box) to vacuum seal the mold. The mold is connected to at least one vacuum source that applies vacuum pressure thereto via a first vacuum port in a first direction. A second vacuum port may also be provided to apply pressure in a second direction. A vacuum release valve may be connected to the mold to release vacuum pressure applied to the mold.Type: ApplicationFiled: August 8, 2011Publication date: February 14, 2013Applicant: Crucible Intellectual Property LLCInventors: Quoc Tran PHAM, Sean Timothy O'keeffe
-
Publication number: 20130037999Abstract: Disclosed is a temperature regulated vessel, and method for using the same, having a body configured to melt meltable material received therein, and one or more temperature regulating lines within the body configured to flow a liquid therein for regulating a temperature of the meltable material received in the melting portion. The vessel has a poor or low thermally conductive material on one or more of its parts, such as on the melting portion, on exterior surfaces of the body, and/or surrounding the temperature regulating lines to increase melt temperature of the material. The melting portion can also have indentations in its surface, and low thermally conductive material can be provided in the indentations. The vessel can be used to melt amorphous alloys, for example.Type: ApplicationFiled: August 12, 2011Publication date: February 14, 2013Applicant: Crucible Intellectual Property LLCInventors: John KANG, Quoc Tran Pham, Theodore Andrew Waniuk, Sean Timothy O'Keeffe, Joseph W. Stevick
-
Patent number: 8325100Abstract: Antenna structures made of bulk-solidifying amorphous alloys and methods of making antenna structures from such bulk-solidifying amorphous alloys are described. The bulk-solidifying amorphous alloys providing form and shape durability, excellent resistance to chemical and environmental effects, and low-cost net-shape fabrication for the highly intricate antenna shapes.Type: GrantFiled: September 6, 2011Date of Patent: December 4, 2012Assignee: Crucible Intellectual Property, LLCInventors: Yun-Seung Choi, James Kang
-
Patent number: RE44385Abstract: A method of forming in-situ composites of metallic alloys comprising an amorphous phase are provided. The method generally comprising the steps of transforming a molten liquid metal at least partially into a crystalline solid solution by cooling the molten liquid metal down to temperatures below a “remelting” temperature, then allowing the solid crystalline metal to remain at temperatures above the glass transition temperature and below the remelting temperature such that at least a portion of the metal remelts to form a partially amorphous phase in an undercooled liquid, and finally subsequently cooling the composite alloy to temperatures below the glass transition temperature. A method of forming in-situ composites of alloys is provided.Type: GrantFiled: February 11, 2004Date of Patent: July 23, 2013Assignee: Crucible Intellectual Property, LLCInventor: William L. Johnson
-
Patent number: RE44425Abstract: A process and apparatus for continuous casting of amorphous alloy sheets having large sheet thickness using bulk solidifying amorphous alloys are provided. Thick continuous amorphous alloy sheets made of bulk solidifying amorphous alloys are also provided.Type: GrantFiled: April 14, 2004Date of Patent: August 13, 2013Assignee: Crucible Intellectual Property, LLCInventor: William L. Johnson
-
Patent number: RE44426Abstract: Methods and apparatuses for the continuous casting of solid foam structures with varying bubble density from bulk solidifying amorphous alloys are provided. Continuously cast solid foam structures having bubble densities in the range of from 50 percent up to 95% by volume are also provided.Type: GrantFiled: April 14, 2004Date of Patent: August 13, 2013Assignee: Crucible Intellectual Property, LLCInventor: James Kang