Patents Assigned to Cyberonics, Inc.
  • Patent number: 8688212
    Abstract: A method for managing bradycardia through vagus nerve stimulation is provided. An implantable neurostimulator configured to deliver electrical therapeutic stimulation in both afferent and efferent directions of a patient's cervical vagus nerve is provided. An operating mode is stored, which includes parametrically defining a maintenance dose of the electrical therapeutic stimulation tuned to restore cardiac autonomic balance through continuously-cycling, intermittent and periodic electrical pulses. The maintenance dose is delivered via a pulse generator through a pair of helical electrodes via an electrically coupled nerve stimulation therapy lead independent of cardiac cycle. The patient's physiology is monitored, and upon sensing a condition indicative of bradycardia, the delivery of the maintenance dose is suspended.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: April 1, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. Kenknight
  • Patent number: 8682445
    Abstract: A method, system, graphical user interface, and apparatus are provided for performing a patient management function for treating depression using an implantable medical device. At least one patient parameter relating to an electrical signal provided by the implantable medical device for treating depression is acquired. At least one therapy parameter defining the electrical signal is correlated with at least one patient parameter. An indication relating to the correlation of the therapy parameter and the patient parameter is provided.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: March 25, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Sejal B. Patel, Jason D. Begnaud, Chris G. DuPont, Albert A. Rodriguez
  • Patent number: 8660647
    Abstract: A method for stimulating a portion of a vagus nerve of a patient to treat a pulmonary disorder is provided. At least one electrode is coupled to at least one portion of a left vagus nerve and/or a right vagus nerve of the patient. An electrical signal is applied to the portion of the vagus nerve using the electrode to treat the pulmonary disorder. The electrical signal may perform a blocking of an intrinsic neural activity on said at least one portion of the left vagus nerve and said right vagus nerve.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: February 25, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Steven M. Parnis, Steven E. Maschino, William R. Buras, Albert W. Guzman
  • Patent number: 8649871
    Abstract: Methods, systems, and apparatus for quantifying the quality of a fiducial time marker for a candidate heart beat, quantifying the quality of a candidate heart beat, or determining a time of beat sequence of the patient's heart. A fiducial time marker is obtained for a candidate heart beat. A quality index of said candidate heart beat is set to a first value. The candidate heart beat is tested with at least one beat validity test. At least a second value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least one beat validity test. The candidate heart beat is tested with at least a second heart beat validity test. At least a third value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least second heart beat validity test.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: February 11, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Mark Frei, Ivan Osorio
  • Patent number: 8641646
    Abstract: A seizure detection device includes a coordinate data interface configured to receive coordinate data for a human, a memory to store coordinate data for a defined location of the human, and a seizure detector configured to identify a seizure event responsive to the coordinate data.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: February 4, 2014
    Assignee: Cyberonics, Inc.
    Inventor: John C. Colborn
  • Patent number: 8639354
    Abstract: In an embodiment, a lead system includes a cuff electrode to secure to a nerve, a first lead portion defining a longitudinal axis, and a second lead portion. An anchor may be between the first lead portion and the second lead portion to secure to non-nerve structure. A connector may extend from the second lead portion to connect to a pulse generator. Electrode elements are spaced apart along the cuff body. The cuff electrode may include a first resilient arcuate-shaped portion extending in a first circumferential direction and having a first arc length; and a second resilient arcuate-shaped portion integrally formed with the first arcuate-shaped portion, extending in a second circumferential direction, and having a second arm length greater that the first arc length. The second arcuate-shaped portion overlaps the first arcuate-shaped portion, The first and second arcuate-shaped portions define a lumen having a substantially re-closable opening.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: January 28, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8630709
    Abstract: A computer-implemented system and method for selecting therapy profiles of electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction is provided. An external programmer includes a plurality of therapy profiles stored in memory. The therapy profiles include different sets of stimulation parameters that cooperatively define alternating cycles of stimuli application and stimuli inhibition for a neurostimulator that are tuned to both efferently activate the heart's intrinsic nervous system and afferently activate the patient's central reflexes. A programming wand is configured to provide the set of stimulation parameters chosen by the user to the neurostimulator through wireless telemetry. Finally, an implantable neurostimulator device includes a stimulation therapy lead terminated by helical electrodes and electrically coupled to the neurostimulator.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: January 14, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Publication number: 20140012111
    Abstract: Systems and methods of monitoring a subject's neurological condition are provided. In some embodiments, the method includes the steps of analyzing a physiological signal (such as an EEG) from a subject to determine if the subject is in a contra-ictal condition; and if the subject is in a contra-ictal condition, providing an indication (e.g., to the subject and/or to a caregiver) that the subject is in the contra-ictal condition. The systems and methods may utilize a minimally invasive, leadless device to monitor the subject's condition. In some embodiments, if the subject is in a pro-ictal condition, the method includes the step of providing an indication (such as a red light) that the subject is in the pro-ictal condition.
    Type: Application
    Filed: September 9, 2013
    Publication date: January 9, 2014
    Applicant: Cyberonics, Inc
    Inventors: David Snyder, Kent W. Leyde, John F. Harris
  • Patent number: 8626304
    Abstract: In one embodiment, a method of treating an upper airway may include delivering a first electrical stimulation to a first portion of a nerve innervating a first upper airway muscle via a plurality of electrodes adjacent the nerve. The method may further include delivering a second electrical stimulation to a second portion of the nerve innervating a second upper airway muscle via the plurality of electrodes, wherein the second muscle is different from the first muscle.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: January 7, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8600505
    Abstract: An implantable device for facilitating control of electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction is provided. A stimulation therapy lead includes helical electrodes configured to conform to an outer diameter of a cervical vagus nerve sheath, and a set of connector pins electrically connected to the helical electrodes. A neurostimulator includes an electrical receptacle into which the connector pins are securely and electrically coupled. The neurostimulator also includes a pulse generator configured to therapeutically stimulate the vagus nerve through the helical electrodes in alternating cycles of stimuli application and stimuli inhibition that are tuned to both efferently activate the heart's intrinsic nervous system and afferently activate the patient's central reflexes by triggering bi-directional action potentials.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: December 3, 2013
    Assignee: Cyberonics, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Patent number: 8600521
    Abstract: In one embodiment, an implantable neurostimulator comprises a pulse generator that generates an electrical pulse signal to stimulate a neural structure in a patient, a stimulation lead assembly coupled to the pulse generator for delivering the electrical pulse signal to the neural structure, a plurality of sensors coupled to the pulse generator, and sensor select logic. Each sensor is individually selectable and the sensor select logic selects any two or more of the plurality of sensors for sensing a voltage difference between the selected sensors. In other embodiments, two or more physiologic parameters are sensed. In yet another embodiment, a method comprises sensing intrinsic electrical activity on a person's nerve and stimulating the nerve based on the sensed intrinsic electrical activity of the nerve.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: December 3, 2013
    Assignee: Cyberonics, Inc.
    Inventors: Randolph K. Armstrong, Scott A. Armstrong
  • Patent number: 8594806
    Abstract: A lead for an implantable device includes a flexible, implantable tether, electrically connectable to an implantable device, and a plurality of control elements, disposed along the tether. The control elements are electrically interconnectable to the implantable device and configured to transmit one of power and communication signals thereto.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: November 26, 2013
    Assignee: Cyberonics, Inc.
    Inventors: Anthony W. Cowley, Robert J. Chilton, Saadat Hussain, David L. Thompson
  • Patent number: 8594804
    Abstract: A particular method of providing power to an implantable medical device includes providing a first signal to a primary coil that is inductively coupled to a secondary coil of an implantable medical device. The method also include determining a first alignment difference between a voltage corresponding to the first signal and at least one of a current corresponding to the first signal and a component voltage at a component of a primary coil circuit. The method further includes determining a frequency sweep range based on the first alignment difference. The method also includes performing a frequency sweep over the frequency sweep range.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: November 26, 2013
    Assignee: Cyberonics, Inc.
    Inventor: Himanshu Joshi
  • Patent number: 8588933
    Abstract: A wire and electrode combination suitable for use with implanted medical devices, and a method for coupling the wire and electrode to achieve a robust electrical connection suitable for use with such medical devices are disclosed. The apparatus employs a wire that is optimized for strength, an electrode optimized for biocompatibility, and a termination sleeve with a closed distal end for coupling the wire to the electrode, while eliminating the potential for galvanic corrosion, enhancing weld quality, and facilitating manufacture of the apparatus. The method involves compressing the sleeve to engage the wire at two locations, where contact between the sleeve and wire at the first location seals the interior of the sleeve, and contact between the sleeve and wire at the second location electrically couples the wire to the sleeve. The sleeve, which is easier to manipulate than the wire, is then spot welded to the electrode.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: November 19, 2013
    Assignee: Cyberonics, Inc.
    Inventors: Jared Floyd, Christopher Genau, Kent W. Leyde
  • Patent number: 8577458
    Abstract: An implantable device for providing electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction with leadless heart rate monitoring is provided. A stimulation therapy lead includes helical electrodes configured to conform to an outer diameter of a cervical vagus nerve sheath, and a set of connector pins electrically connected to the helical electrodes. A neurostimulator includes an electrical receptacle into which the connector pins are securely and electrically coupled. The neurostimulator also includes a pulse generator configured to therapeutically stimulate the vagus nerve through the helical electrodes in alternating cycles of stimuli application and stimuli inhibition that are tuned to both efferently activate the heart's intrinsic nervous system and afferently activate the patient's central reflexes by triggering bi-directional action potentials.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: November 5, 2013
    Assignee: Cyberonics, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Patent number: 8577459
    Abstract: A method for estimating capacity of a battery in an implantable medical device includes obtaining a characteristic curve of voltage versus resistance for the battery, periodically determining voltage and resistance of the battery, and comparing the resistance with a third derivative function of the characteristic curve, the third derivative function having roots representing near depletion of the battery and end of service of the battery, respectively. Remaining time of service of the battery can also be determined by comparing the resistance value with a curve of battery capacity versus resistance for the battery.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: November 5, 2013
    Assignee: Cyberonics, Inc.
    Inventors: Anthony W. Cowley, Saadat Hussain
  • Patent number: 8571654
    Abstract: A vagus nerve neurostimulator system with multiple patient-selectable modes for treating chronic cardiac dysfunction is provided. An implantable neurostimulator includes a pulse generator coupled to a therapy lead terminated by a pair of helical electrodes positioned over a cervical vagus nerve. The pulse generator is configured to deliver through the helical electrodes continuously-cycling, intermittent and periodic electrical stimulation that is parametrically defined to bi-directionally propagate through nerve fibers in the cervical vagus nerve. The implantable neurostimulator includes a magnetic switch configured to switch the pulse generator between a plurality of operating modes that are each separately selectable in response to a unique and remotely-applied magnetic signal. An external controller includes patient-actuatable controls configured to enable selection of one of the operating modes of the pulse generator.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: October 29, 2013
    Assignee: Cyberonics, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Patent number: 8565867
    Abstract: We disclose a method of treating a medical condition in a patient using an implantable medical device including coupling at least a first electrode and a second electrode to a cranial nerve of the patient, providing a programmable electrical signal generator coupled to the first electrode and the second electrode, generating a first electrical signal with the electrical signal generator, applying the first electrical signal to the electrodes, wherein the first electrode is a cathode and the second electrode is an anode, reversing the polarity of the first electrode and the second electrode, yielding a configuration wherein the first electrode is an anode and the second electrode is a cathode, generating a second electrical signal with the electrical signal generator, applying the second electrical signal to the electrodes, reversing the polarity of the first electrode and the second electrode, yielding a configuration wherein the first electrode is a cathode and the second electrode is an anode, generating a
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: October 22, 2013
    Assignee: Cyberonics, Inc.
    Inventors: Randolph K. Armstrong, Steven E. Maschino, Timothy L. Scott
  • Patent number: 8565881
    Abstract: A method and an apparatus for projecting an end of service (EOS) and/or an elective replacement indication (ERI) of a component in an implantable device is provided. The method comprises measuring the measured voltage of the energy storage device, and determining whether the measured voltage is less than a transition voltage. When the measured voltage is less than the transition voltage, determining a time period remaining until an end of service of the energy storage device is based upon a function of the measured voltage. When the measured voltage is greater than or equal to the transition voltage, determining a time period remaining until an end of service of the energy storage device is based upon a function of the total charge depleted. The transition voltage is a voltage associated with the transition point of non-linearity in the battery voltage depletion curve.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: October 22, 2013
    Assignee: Cyberonics, Inc.
    Inventors: Randolph K. Armstrong, Scott A. Armstrong, D. Michael Inman, Timothy L. Scott
  • Patent number: 8560070
    Abstract: A method and an apparatus for determining a time period remaining in a useful life of an energy storage device in an implantable medical device. The method may include measuring a voltage of the energy storage device to produce a measured voltage, and comparing the measured voltage to a transition voltage. While the measured voltage is greater than or equal to the transition voltage, the time period remaining in the energy storage device's useful life is approximated based upon a function of charge depleted. While the measured voltage is less than the transition voltage, the time period remaining in the energy storage device's useful life is approximated based upon a higher order polynomial function of the measured voltage. The transition voltage corresponds to a predetermined point on a energy storage device voltage depletion curve representing the voltage across the energy storage device over time.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: October 15, 2013
    Assignee: Cyberonics, Inc.
    Inventors: Randolph K. Armstrong, Scott A. Armstrong, D. Michael Inman, Timothy L. Scott